摘要
Background Nineteen undulators of various types are being fabricated for high-energy photon source(HEPS).In order to ensure the optical performance of the undulators,the girder deformation is usually carefully optimized during the structural design stage.Purpose Optimization of magnet girder deformation is one of the key points to ensure undulator magneticfield performance.To reduce magnet girder deformation,base plate,feet and strong back should be designed carefully.In the HEPS undulator design and manufacturing stage,it is found that under special circumstances,such as after the height of the feet is adjusted,or after the undulator is lifted to other place,the base plate and girder may deform more than expected.Methods Therefore based on ANSYS simulation and experimental test results,the factors causing the deformation of the girders are carefully analyzed.Base plate and feet were optimized for different types of undulators to avoid girder deformation.Related simulation and laser tracker measurement were performed tofind out the reason in this paper.Results and conclusion Results show that the base plate of C-frame undulators will collapse and deform under the action of magnetic force.Asymmetric sagged base plate is the main reason of girder deformation.Increasing the thickness of the base plate and increasing the number of feet can both reduce that deformation.Optimization of magnet girder deformation is one of the key points to ensure undulator magneticfield performance.To reduce magnet girder deformation,base plate,feet and strong back should be designed carefully.