期刊文献+

Integral Equation Method for a Non-Selfadjoint Steklov Eigenvalue Problem 被引量:3

原文传递
导出
摘要 We propose a numerical method for a non-selfadjoint Steklov eigenvalue problem of the Helmholtz equation.The problem is formulated using boundary integrals.The Nyström method is employed to discretize the integral operators,which leads to a non-Hermitian generalized matrix eigenvalue problems.The spectral indicator method(SIM)is then applied to calculate the(complex)eigenvalues.The convergence is proved using the spectral approximation theory for(non-selfadjoint)compact operators.Numerical examples are presented for validation.
出处 《Communications in Computational Physics》 SCIE 2022年第5期1546-1560,共15页 计算物理通讯(英文)
基金 supported by the NSFC under grant No.11901085.
  • 相关文献

同被引文献4

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部