摘要
We propose a numerical method for a non-selfadjoint Steklov eigenvalue problem of the Helmholtz equation.The problem is formulated using boundary integrals.The Nyström method is employed to discretize the integral operators,which leads to a non-Hermitian generalized matrix eigenvalue problems.The spectral indicator method(SIM)is then applied to calculate the(complex)eigenvalues.The convergence is proved using the spectral approximation theory for(non-selfadjoint)compact operators.Numerical examples are presented for validation.
基金
supported by the NSFC under grant No.11901085.