期刊文献+

Frame Invariance and Scalability of Neural Operators for Partial Differential Equations

原文传递
导出
摘要 Partial differential equations(PDEs)play a dominant role in themathematicalmodeling ofmany complex dynamical processes.Solving these PDEs often requires prohibitively high computational costs,especially when multiple evaluations must be made for different parameters or conditions.After training,neural operators can provide PDEs solutions significantly faster than traditional PDE solvers.In this work,invariance properties and computational complexity of two neural operators are examined for transport PDE of a scalar quantity.Neural operator based on graph kernel network(GKN)operates on graph-structured data to incorporate nonlocal dependencies.Here we propose a modified formulation of GKN to achieve frame invariance.Vector cloud neural network(VCNN)is an alternate neural operator with embedded frame invariance which operates on point cloud data.GKN-based neural operator demonstrates slightly better predictive performance compared to VCNN.However,GKN requires an excessively high computational cost that increases quadratically with the increasing number of discretized objects as compared to a linear increase for VCNN.
出处 《Communications in Computational Physics》 SCIE 2022年第7期336-363,共28页 计算物理通讯(英文)
基金 supported by the U.S.Air Force under agreement number FA865019-2-2204.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部