期刊文献+

A Hybrid Fluid-Solid Interaction Scheme Combining the Multi-Component Diffuse Interface Method and the Material Point Method

原文传递
导出
摘要 We propose a hybrid scheme combing the diffuse interface method and the material point method to simulate the complex interactions between the multiphase compressible flow and elastoplastic solid.The multiphase flow is modelled by the multi-component model and solved using a generalized Godunov method in the Eulerian grids,while the elastoplastic solid is solved by the classical material point method in a combination of Lagrangian particles and Eulerian background grids.In order to facilitate the simulation of fluid-solid interactions,the solid variables are further interpolated to the cell center and coexist with the fluid in the same cell.An instantaneous relaxation procedure of velocity and pressure is adopted to simulate the momentum and energy transfers between various materials,and to keep the system within a tightly coupled interaction.Several numerical examples,including shock tube problem,gasbubble problem,air blast,underwater explosion and high speed impact applications are presented to validate the numerical scheme.
出处 《Communications in Computational Physics》 SCIE 2022年第10期1401-1436,共36页 计算物理通讯(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部