期刊文献+

The Corrected Finite Volume Element Methods for Diffusion Equations Satisfying Discrete Extremum Principle

原文传递
导出
摘要 In this paper,we correct the finite volume element methods for diffusion equations on general triangular and quadrilateral meshes.First,we decompose the numerical fluxes of original schemes into two parts,i.e.,the principal part with a twopoint flux structure and the defective part.And then with the help of local extremums,we transform the original numerical fluxes into nonlinear numerical fluxes,which can be expressed as a nonlinear combination of two-point fluxes.It is proved that the corrected schemes satisfy the discrete strong extremum principle without restrictions on the diffusion coefficient and meshes.Numerical results indicate that the corrected schemes not only satisfy the discrete strong extremum principle but also preserve the convergence order of the original finite volume element methods.
出处 《Communications in Computational Physics》 SCIE 2022年第10期1437-1473,共37页 计算物理通讯(英文)
基金 partially supported by the National Science Foundation of China(No.12071177,No.12126307,No.11971069) the Science Challenge Project(No.TZ2016002).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部