期刊文献+

基于HCOPSO算法的USV舵向PID控制参数整定方法 被引量:1

Parameter Tuning Method for USV Rudder Steering PID ControlBased on HCOPSO Algorithm
下载PDF
导出
摘要 高速无人艇(USV)舵向控制要求同时满足调节时间短、超调量小,针对USV舵向比例积分微分(PID)控制的参数整定需求,将混合均值中心反向学习粒子群优化(HCOPSO)算法与PID控制结合,提出一种基于HCOPSO算法的USV舵向PID控制器参数整定方法。利用HCOPSO对PID控制器参数进行寻优,有效解决寻优过程的局部最优解问题。对比研究了粒子群(PSO)算法、线性惯性权重递减粒子群(LDIWPSO)算法、HCOPSO算法的PID控制器参数整定效果,结果表明, HCOPSO算法参数整定的USV舵向PID控制器具有更好的控制效果,相比于PSO、LDIWPSO,调节时间分别缩短22%、15%,超调量分别降低89%、74%,迭代次数分别减少40%、30%。基于研制的“久航750”USV开展了海洋环境测试,测试结果表明了文中设计方法应用于小型高速USV舵向控制的有效性。 The rudder steering control of high-speed unmanned surface vessels(USVs)must simultaneously satisfy therequirements of a short adjustment time and small overshoot.To satisfy the parameter tuning requirements for rudder steeringproportional integral derivative(PID)control of USVs,a parameter tuning method based on the hybrid mean center opposition-based learning particle swarm optimization(HCOPSO)algorithm was devised in this study.The HCOPSO algorithm was usedto optimize the parameters of the PID controller,and this prevented the optimization process from becoming trapped in localoptimal solutions.The PID controller parameter tuning effects of the particle swarm optimization(PSO),linear decreasinginertia weight particle swarm optimization(LDIWPSO),and HCOPSO algorithms were compared and studied.The resultsindicate that the USV rudder PID controller with the HCOPSO algorithm has the best control effect.Compared with those ofPSO and LDIWPSO,the adjustment time is reduced by 22%and 15%,the overshoot is reduced by 89%and 74%,and the number of iterations is reduced by 40%and 30%,respectively.Using the developed Jiuhang 750 USV,a marine environmenttest was performed.The test results indicate that the proposed method is effective for the rudder steering control of small high-speed USVs.
作者 陈明志 刘兰军 陈家林 杨睿 黎明 CHEN Mingzhi;LIU Lanjun;CHEN Jialin;YANG Rui;LI Ming(College of Engineering,Ocean University of China,Qingdao 266100,China;Shandong Provincial Engineering ResearchCenter for Marine Intelligent Equipment Technology,Qingdao 266100,China)
出处 《水下无人系统学报》 2023年第3期381-387,397,共8页 Journal of Unmanned Undersea Systems
基金 国家重点研发计划项目资助(2017YFC****203)。
关键词 无人艇 比例积分微分控制 粒子群优化 舵向控制 参数整定 unmanned surface vehicle proportional integral derivative control particle swarm optimization rudder steeringcontrol parameter tuning
  • 相关文献

参考文献8

二级参考文献54

  • 1孔庆福,吴家明,贾野,陈国钧.舰船喷水推进技术研究[J].舰船科学技术,2004,26(3):28-30. 被引量:25
  • 2姜继海,苏文海,张洪波,刘庆和.直驱式容积控制电液伺服系统及其在船舶舵机上的应用[J].中国造船,2004,45(4):54-59. 被引量:21
  • 3徐玉如,苏玉民,庞永杰.海洋空间智能无人运载器技术发展展望[J].中国舰船研究,2006,1(3):1-4. 被引量:86
  • 4王丽,王晓凯.一种非线性改变惯性权重的粒子群算法[J].计算机工程与应用,2007,43(4):47-48. 被引量:60
  • 5Kennedy J, Eberhart R.Particle swarm optimization[C]// Proc IEEE International Conference on Naural Net- works.Piscataway, NJ, USA: IEEE Service Center, 1995: 1942-1948.
  • 6Shi Y, Eberhart R.A modified particle swarm optimizer[C]// Proceedings of IEEE International Conference on Evolu- tionary Computation,Anchorage,Alaska, 1998:39-43.
  • 7Shi Y, Eberhart R C.Empirical study of particle swarm optimization[C]//Proceedings of the Congress on Evolu- tionary Computation.Piscataway: IEEE Service Center, 1999: 1945-1950.
  • 8Chauhan P,Deep K,Pant M.Novel inertia weight strate- gies for particle swarm optimization[J].Memetic Computing, 2013,5(3) :229-251.
  • 9Nickabadi A, Ebadzadeh M M, Safabakhsh R.A novel par- ticle swarm optimization algorithm with adaptive inertia weight[J].Applied Soft Computing Journal, 2011,11 (4) : 3658-3670.
  • 10Mahor A,Rangnekar S.Short term generation scheduling of cascaded hydro electric system using novel self adaptive inertia weight PSO[J].International Journal ofElectrical Power and Energy Systems,2012,34( 1 ) : 1-9.

共引文献255

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部