摘要
疾病诊断预测旨在利用电子健康数据建模疾病进展模式,预测患者未来的健康状况,其在辅助临床决策、医疗保健服务等领域得到广泛应用。为了进一步发掘就诊记录中有价值的信息,提出了一种基于对比学习的疾病诊断预测算法。对比学习通过衡量样本间相似度为模型提供自监督训练信号,提升模型的信息捕捉能力。所提算法通过对比训练挖掘相似患者之间的共性知识,增强模型学习患者表征的能力;为了捕获更加全面的共性信息,还进一步挖掘了目标患者相似群体的信息作为辅助信息刻画患者健康状态。在公开数据集上的实验结果表明,相比Retain, Dipole, LSAN和GRASP算法,所提算法在再入院预测任务的AUROC和AUPRC指标上分别提升2.9%和8.1%以上,在诊断预测任务的Recall@10和MAP@10指标上分别提升2.1%和1.8%以上。
Disease diagnosis prediction aims to use electronic health data to model disease progression patterns and predict the future health status of patients,and is widely used in assisting clinical decision-making,healthcare services and other fields.In order to further explore the valuable information in the medical records,a disease diagnosis prediction algorithm based on contrastive learning is proposed.Contrastive learning provides self-supervised training signals for the model by measuring the similarity between samples,which can improve the information capture ability of the model.The proposed algorithm excavates the common knowledge between similar patients through contrastive training,and enhances the ability of the model to learn patient representations.In order to capture more comprehensive common information,the information of similar groups of the target patient is further explored as auxiliary information to characterize the health status of the target patient.Experimental results on the public dataset show that compared with the Retain,Dipole,LSAN and GRASP algorithms,the proposed algorithm improves AUROC and AUPRC of the readmission prediction task by more than 2.9%and 8.1%respectively,and Recall@10 and MAP@10 of the diagnosis prediction task by 2.1%and 1.8%,respectively.
作者
王明霞
熊贇
WANG Mingxia;XIONG Yun(School of Computer Science,Fudan University,Shanghai 200433,China;Shanghai Key Laboratory of Data Science,Shanghai 200433,China)
出处
《计算机科学》
CSCD
北大核心
2023年第7期46-52,共7页
Computer Science
关键词
诊断预测
深度学习
对比学习
聚类
相似患者
Diagnosis prediction
Deep learning
Contrastive learning
Clustering
Similar patients