期刊文献+

利用多传感器信号指标的风扇状态监测方法研究 被引量:1

Study on Fan Condition Monitoring Method Using Multi-sensor Signal Index
下载PDF
导出
摘要 本文提出一种基于多传感器信号指标的风扇状态监测方法。首先使用多种常用的传感器对风扇进行拾取信号,采集不同状态下的多种传感器信号,并且计算出信号的指标;然后采用主成分分析法(PCA)对多传感器信号指标进行降维处理,提取可以表征风扇运行状态的主要成分指标;最后使用对非线性特征指标进行学习具有优势的循环神经网络(RNN)进行预测分析,实现对风扇状态的有效监测和故障识别,并通过实验验证了本文方法的有效性。 This paper presents a fan condition monitoring method based on multi-sensor signal indexes.Firstly,a variety of commonly used sensors are used to pick up the signals of the fan,collect the signals of various sensors in different states,and calculate the indicators of the signals.Secondly,the principal component analysis is used to reduce the dimension of multi-sensor signal indexes,simplify the state detection model and extract the main component indexes which can represent the running state of the fan.Finally,the RNN,which has the advantage of learning the nonlinear characteristic indexes,is used to predict and analyze the fan state,so as to realize the effective monitoring of the fan state.Experimental results show the effectiveness of the present method.
作者 吴川辉 程华利 陈英武 李明超 刘力源 WU Chuanhui;CHENG Huali;CHEN Yingwu;LI Mingchao;LIU Liyuan(P&R Measurement Technology Co.,Ltd.,Zhuhai 519000,Guangdong,China)
出处 《机械科学与技术》 CSCD 北大核心 2023年第6期934-938,共5页 Mechanical Science and Technology for Aerospace Engineering
关键词 风扇 主成分分析 循环神经网络 状态监测 fan principal component analysis recurrent neural network condition monitoring
  • 相关文献

参考文献7

二级参考文献50

  • 1McFadden P D, Smith J D. An explanation for the asymmetry of the modulation sidebands about the tooth meshing frequency in epicyclic gear vibration [J]. Proceedings of the Institution of Mechanical Engineers, 1985, 199(Ct): 65-70.
  • 2McNames J. Fourier series analysis of epicyclic gearbox vibration[J]. Journal of Vibration and Acoustics- Transactions oftheASME, 2002, 124(1): 150-152.
  • 3Mosher M. Understanding vibration spectra of planetary gear systems for fault detection[C]//Proceedings of ASME Design Engineering Technical Conferences, Chicago, USA, 2003.
  • 4Inalpolat M, Kahraman A. A theoretical and experimental investigation of modulation sidebands of planeary gear sets[J]. Journal of Sound and Vibration, 2009, 323(3-5): 677-696.
  • 5Inalpolat M, Kahraman A. A dynamic model to predict modulation sidebands of a planetary gear set having manufacturing errors [J]. Journal of Sound and Vibration, 2010, 329(4): 371-393.
  • 6McFadden P D, Smith J D. Effect of transmission path on measured gear vibration[J]. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1986, 108(3): 377-378.
  • 7Kia S H, Henao H, Capolino G A. Torsional vibration assessment using induction machine electromagnetic torque estimation[J]. IEEE Transactions on Industrial Electronics, 2010, 57(t): 209-219.
  • 8Henao H, Kia S H, Capolino G A. Torsional-vibration assessment and gear-fault diagnosis in railway traction system[J]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1707-1717.
  • 9Randall R B. A new method of modeling gear faults [J]. Joumal of Mechanical Design, 1982, 104(2): 259-267.
  • 10McFadden P D. Detecting fatigue cracks in gears by amplitude and phase demodulation of the meshing vibration[J]. Journal of Vibration Acoustics Stress and Reliability in Design-Transactions of the ASME, 1986, 108(2): 165-170.

共引文献82

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部