期刊文献+

风力机叶片翼型俯仰与动尾翼耦合运动数值仿真

Numerical Simulation of Combined Motions of Wind Turbine Airfoil Flap and Pitch
下载PDF
导出
摘要 现代风力机叶片普遍采用变桨系统降低气动载荷。尾缘襟翼是实现飞机机翼载荷控制的一种可行方法,然而由于相关技术尚未成熟,动尾翼尚未实际应用在风力机叶片上。本文采用数值计算模拟和分析动尾翼与翼型俯仰耦合状况下的动态升力变化。采用结构化网格,对尾缘襟翼部分应用浸入边界方法,其余部分仍然沿用传统贴体网格算法,实现了动尾翼的仿真又保证了较高的计算效率。计算结果与风洞实验进行了详细对比,动态升力的变化趋势和大小均显示了较好的吻合,为包含动尾翼的智能叶片开发提供参考。 Modern wind turbine has pitch control systemwhich alleviates aerodynamic loads.Trailing edge flap is a feasible aerodynamic load control device for airplane wings.However,therelevant techniques have not been fully developed.Therefore,the trailing edge flap has not been successfully applied to the wind turbine rotors.The dynamic lift caused by the combined motions of airfoil flap and pitch is simulated through numerical method.The trailing edge part is simulated with an immersed boundary method,and the other part of the airfoil is modeled by a traditional curvilinear mesh,which helps to simulate the trailing edge flap and meanwhile ensure high calculation efficiency.The results were thoroughly compared with the existing wind tunnel experiments.Relatively good agreements were achieved which provide the references for developing the smart blades with trailing edge flaps.
作者 李松林 朱卫军 孙振业 陶秋晗 曾明伍 LI Songlin;ZHU Weijun;SUN Zhenye;TAO Qiuhan;ZENG Mingwu(Dongfang Electric Wind Power Co.,Ltd.,Deyang 618000,Sichuan,China;College of Electrical,Energy and Power Engineering,Yangzhou University,Yangzhou 225127,Jiangsu,China;School of Aerospace Engineering,Xi′an Jiaotong University,Xi′an 710049,China)
出处 《机械科学与技术》 CSCD 北大核心 2023年第6期962-968,共7页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(11672261,51905469) 四川省科技厅2019年重点研发项目(2019YFG0018)。
关键词 动尾翼 翼型俯仰 动态升力 数值计算模拟 trailing edge flap airfoil pitch motion dynamic lift numerical simulation
  • 相关文献

参考文献6

二级参考文献29

  • 1杜超,李孝伟.基于动态嵌套网格方法的摆动翼型粘性绕流数值模拟[J].上海大学学报(自然科学版),2007,13(3):304-307. 被引量:3
  • 2史志伟,耿存杰,明晓,王同光.旋翼翼型俯仰沉浮运动非定常气动特性实验研究[J].实验流体力学,2007,21(3):18-23. 被引量:9
  • 3Veers P S, Ashwill T D, Sutherland H J, et al. Trends in the Design, Manufacture and Evaluation of Wind Turbine Blades [J]. Wind Energy, 2003, 6(3): 245-259.
  • 4Barlas T K, Van Kuik G A M. Review of State of the Art in Smart Rotor Control Research for Wind Turbines [J]. Progress in Aerospace Sciences, 2010, 46(1): 1-27.
  • 5Troldborg N. Computational Study of the Riso-Bl-18 Air- foil With a Hinged Flap Providing Variable Trailing EdgeGeometry [J]. Wind Engineering, 2005, 29(2): 89 113.
  • 6Lackner M A, Van Kuik G. A Comparison of Smart Ro- tor Control Approaches Using Trailing Edge Flaps and Individual Pitch Control [J]. Wind Energy, 2010, 13(2/3): 11134.
  • 7Wilson D G, Resor B R, Berg D E, et al. Active Aerody- namic Blade Distributed Flap Control Design Procedure for Load Reduction on the up Wind 5 MW Wind Turbine [C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting, 2010:4 7.
  • 8Andersen P B. Advanced Load Alleviation for Wind Tnr- bines Using Adaptive Trailing Edge Flaps: Sensoring and Control [D]. Roskilde, Denmark, Technical University of Denmark, 2010.
  • 9Jonkman J, Butterfield S, Musial W, et al. Definition of a 5 MW Reference Wind Turbine for Offshore System De- velopment [R]. USA, Golden, Colorado: NREL/TP-500- 38060. 2009.
  • 10Van Engelen T G, Van Def Hooft E L. Individual Pitch Control Inventory [R]. Delft, No.ECN-C-03-138, Technical Report of Technical University of Delft, 2005.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部