摘要
良好的先导化合物对于药物研发具有深远影响,可以提高药物上市的成功率。利用传统方法发现先导化合物存在成本高且耗时的问题,而人工智能(artificial intelligence,AI)可以高效发现良好的先导化合物。本文系统地总结了通过人工智能的筛选模型与生成模型获得先导化合物的研究进展,按照输入信息的类型归纳整理不同的模型,重点介绍了利用筛选模型实现药物重定位和利用生成模型实现多目标药物设计,探讨了人工智能在先导化合物研究领域的发展前景,为人工智能在先导化合物方面的应用提供新的研究思路。
Excellent lead compounds have a profound influence on drug development and can improve the suc⁃cess rate of product launch.It is expensive and time-consuming to discover lead compounds by traditional methods,yet artificial intelligence(AI)can discover good lead compounds efficiently.This article systematically summarizes the research progress of obtaining lead compounds through the screening and generation models of AI,classifies different models according to the type of information input,focuses on drug repurposing by screen⁃ing model and multi-objective drug design by generation model,and discusses the development prospect of AI in the research field of lead compounds,aiming to provide new research ideas for the application of AI in lead compounds.
作者
顾志浩
郭文浩
姚和权
李宣仪
林克江
GU Zhihao;GUO Wenhao;YAO Hequan;LI Xuanyi;LIN Kejiang(Department of Medicinal Chemistry,School of Pharmacy,China Pharmaceutical University,Nanjing 211198,China)
出处
《中国药科大学学报》
CAS
CSCD
北大核心
2023年第3期294-304,共11页
Journal of China Pharmaceutical University
基金
国家自然科学基金资助项目(No.81903439)。
关键词
人工智能
先导化合物
筛选
生成
artificial intelligence
lead compound
screening
generation