期刊文献+

基于粒子群优化的主动稳定杆系统自抗扰控制

Active Disturbance Rejection Control of Active Stabilizer System Based on Particle Swarm Optimization
下载PDF
导出
摘要 为了提高车辆的抗侧倾能力,设计了液压马达驱动式主动稳定杆控制系统,提出了基于粒子群优化(PSO)算法的分层控制策略。上层自抗扰控制器(ADRC)计算出整车所需反侧倾力矩,整车所需要的反侧倾力矩经过分配器分配到前后轴,下层三闭环比例-积分-微分控制器(PID)接收到所要提供的反侧倾力矩后计算出控制电流输入到伺服阀,从而驱动马达输出轴旋转并通过稳定杆产生主动力矩,实现车辆的主动防侧倾控制。为了使控制器有更好的控制效果,采用PSO算法整体优化上、下层控制,优化后的ADRC和PID参数再输入到整车模型中,为了使仿真接近实际效果,把实验测得的横向稳定杆扭转刚度也代入到模型中。在C级路面上采用蛇形和双移线工况进行仿真,通过将PSO优化的自抗扰系统与被动系统、PID控制系统和未优化的自抗扰控制系统对比进行仿真验证。仿真数据表明:侧倾角的大小直接影响车辆侧倾稳定性,采用PSO算法优化的分层控制策略能显著降低车辆的侧倾角,有效抑制过度的车身侧倾运动带来的不稳定性;主动控制的稳定杆比传统被动式稳定杆能更好地给车辆提供所需要的反侧倾力矩,提高了车辆抗侧倾能力;优化后的ADRC控制器比被动系统和未优化的ADRC控制器有更好的主动控制效果,相同工况下侧倾角更小,抗侧倾能力更强,优化后的三闭环PID响应速度更快,有更佳的跟随性能。 In order to improve the anti-roll ability of vehicle,this paper designed a hydraulic motor-driven active stabilizer control system,and proposed a hierarchical control strategy based on particle swarm optimization(PSO)algorithm.The upper active disturbance rejection controller(ADRC)calculates the anti-roll torque required by the whole vehicle,and the anti-roll torque required by the whole vehicle is distributed to the front and rear axles through a distributor.The lower three-loop proportional-integral-differential(PID)controller receives the anti-roll torque to be provided,calculates the control current and inputs it to the servo valve,so as to drive the motor output shaft to rotate and generates the active torque through the stabilizer bar to realize the active anti-roll control of the vehicle.In order to make the controller has better control effect,the PSO algorithm was used to optimize the upper and lower control as a whole,and the optimized ADRC and PID parameters were input into the vehicle model.In order to make the simulation close to the actual effect,the torsional stiffness of the lateral stabilizer bar measured by the experiment was also brought into the model.The serpentine and double lane shifting conditions were used for simulation on Class C road surface,and the simulation verification was carried out by comparing PSO-optimized ADRC system with passive system,PID control system and unoptimized ADRC system.The simulation data show that the roll angle directly affects the vehicle’s roll stability,the hierarchical control strategy optimized by PSO algorithm can significantly reduce the vehicle’s roll angle,and effectively suppress the instability caused by excessive body roll motion.The active control stabilizer can better provide the required anti-roll torque for the vehicle than the traditional passive stabilizer,and improve the anti-roll ability of the vehicle.The optimized ADRC controller has better active control effect than the passive system and the unoptimized ADRC controller.Under the same working condition,the roll angle is smaller,the anti-roll ability is stronger,the optimized three closed-loop PID response speed is faster,and the tracking performance is better.
作者 赵强 刘传卫 †张娜 朱宝全 谢春丽 ZHAO Qiang;LIU Chuanwei;ZHANG Na;ZHU Baoquan;XIE Chuni(College of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin 150040,Heilongjiang,China;School of Electrical and Control Engineering,Heilongjiang University of Science and Technology,Harbin 150022,Heilongjiang,China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第6期52-61,共10页 Journal of South China University of Technology(Natural Science Edition)
基金 国家重点研发计划重点专项(2017YFC0803901) 黑龙江省重点研发计划项目(JD22A014) 黑龙江省自然科学基金资助项目(LH2021F002)。
关键词 主动稳定杆 液压马达 自抗扰控制器 粒子群优化算法 侧倾稳定性 active stabilizer bar hydraulic motor active disturbance rejection controller particle swarm optimization algorithm roll stability
  • 相关文献

参考文献6

二级参考文献57

  • 1曾迥立.悬架稳定杆刚度的计算与分析[J].汽车科技,2004(5):14-16. 被引量:7
  • 2蔡茂林.现代气动技术理论与实践 第一讲:气动元件的流量特性[J].液压气动与密封,2007,27(2):44-48. 被引量:50
  • 3Cimba D, Wagner J, Baviskar A. Investigation of Active Torsion Bar Actuator Configurations to Re- duce Vehicle Body Roll[J]. Vehicle Syst. Dyn., 2006, 44(9): 719-736.
  • 4Uys P E, Els P S, Thoresson M J, et aI. Experi- mental Determination of Moments of Inertia Sor an Off-road Vehicle in a Regular Engineering Labora- tory[J]. Int. J. Mech. Eng. Educ., 2006, 34(4): 291-314.
  • 5Buma S, Ookuma Y, Taneda A, et al. Synthesis and Development of Electric Active Stabilizer Sus- pension System[J]. Proceeding of the Japan Society of Mechanical Engineers, 2008, 74 (748) : 2827- 2836.
  • 6Shuuichi Buma, Yasuhiro Okuma, Akiya Taneda, et al. Design and Development of Electric Active Stabilizer Suspension System[J]. Journal of System Design and Dynamics, 2010, 4(1) : 61-76.
  • 7Jeon K, Hwang H, Choi S, et al. Development of an Electric Active Rollcontrol(ARC) Alogrithm for a SUV [J]. International Journal of Automotive Technology, 2012, 13(2): 247-253.
  • 8Darling J, Hickson L R. An Experimental Study of a Prototype Active Anti-roll Suspension System[J]. Vehicle Syst. Dyn., 1998, 29(5): 309-329.
  • 9Bartolini G, Pisano A, Punta E, et al. A Survey of Applications of Second-order Sliding Mode Control to Mechanical Systems[J]. Int. J. Control, 2003, 76(9) : 875-892.
  • 10赵又群,林棻.基于UKF算法的汽车状态估计[J].中国机械工程,2010,21(5):615-619. 被引量:31

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部