期刊文献+

基于机器视觉的快递面单识别 被引量:1

Recognition of waybill based on machine vision
下载PDF
导出
摘要 为有效解决分拣环节人工投入成本高、后台信息更新速度慢和分拣效率低等问题,提出基于机器视觉同时对一维码和三段码定位识别方法。改进一维码定位方法,利用“线扫描”提高一维码解码正确率;改进Faster R-CNN目标检测方法,实现不同区域三段码分类定位。试验结果表明,对不同样式快递面单均有较好的识别效果,对不良一维码识别率和准确率整体达到60%以上,不同区域三段码定位准确率达到98.47%,单票识别率达到98.03%,整体识别时间在105~146 ms。研究结果可为快递高效分拣提供技术参考。 In order to effectively solve the problems of high labor input cost of the sorting link,slow background information update speed and low sorting efficiency,a simultaneous positioning and recognition method of one-dimensional code and three-segment code based on machine vision was proposed.It mainly includes improving one-dimensional code positioning method and using“line scanning”to improve the decoding accuracy of one-dimensional code.Faster R-CNN target detection method was improved to achieve classification and positioning of three-segment code in different regions.The experimental results show that this method has a good recognition effect on different styles of waybill.The recognition rate and accuracy rate of bad one-dimensional code is more than 60%,the accuracy rate of three-segment code positioning in different regions reaches 98.47%,the overall recognition rate of single waybill reaches 98.03%,and the overall recognition time is between 105 ms and 146 ms.The research results can provide technical reference for efficient sorting of waybills.
作者 郭广振 张丰收 GUO Guangzhen;ZHANG Fengshou(School of Mechanical Engineering,Henan University of Science and Technology,Luoyang 471003,China)
出处 《包装与食品机械》 CAS 北大核心 2023年第3期65-69,74,共6页 Packaging and Food Machinery
关键词 机器视觉 同时识别 目标检测 分类定位 识别时间 machine vision simultaneous recognition target detection classification positioning recognition time
  • 相关文献

参考文献9

二级参考文献70

  • 1K W Bow Yer, K Chang, P Flynn. A survey of approaches and challenges in 3D And multimodal 2d + 3d face recognition [ J ]. Couputer vision and image understanding 2006,101 (1) :1 -15.
  • 2郑建湖,陈洪,董德存.快速路交通事件自动检系统及算法[J].计算机测量及控制,2006,14(9):1143-1145.
  • 3M Heikkila, M Pietikainen. A texture - based method for modeling the background and detecting moving objects[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(4 ) : 657 - 662.
  • 4Ghosh Kuntal, Sarkar Sandip, Bhanmik Kamales. A theory of "fuzzy" edge detection in the light of human visual system I J]. Journal of Intelligent Systems, 2008,17 ( 1 ) : 229 - 246.
  • 5Timothy S Newman, Hong Yi. A survey of the marching cubes al- gorithm [ J ]. Computers & Graphics, 2006,30 (5) :854 - 879.
  • 6Katona M,Nyul,LG.A novel method for accurate and efficient barcode detection with morphological operations.2012 Eighth International Conference on Signal Image Technology and Internet Based Systems (SITIS).IEEE.2012.307-314.
  • 7Katona M,Nyul LQ Efficient ID and 2D barcode detection using mathematical morphology.Mathematical Morphology and its Applications to Signal and Image Processing.Springer Berlin Heidelberg,2013:464-475.
  • 8崔屹.图象处理与分析数学形态学方法及应用.北京:科学出版社,2006.
  • 9贾小军,喻擎苍.基于开源计算机视觉库OpenCV的图像处理[J].计算机应用与软件,2008,25(4):276-278. 被引量:68
  • 10吕佩卓,赖晓铮,赖声礼.基于小波多分辨率分析的PDF417定位算法[J].自动化学报,2008,34(5):597-600. 被引量:8

共引文献48

同被引文献33

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部