摘要
不同于单纯电能分配的传统配电网,新型配电系统逐步展现出源-网-荷-储等众多资源的强耦合强关联复杂大系统形态,其各类资源呈现出“点多、面广、量少”的广域分布特征。挖掘可再生能源发电、分布式储能及柔性负荷等分布式资源的广域电压调控潜力对构建源网荷储高度融合的新型配电系统具有重要意义。文中提出了一种基于数据驱动的新型配电系统分布式源网荷储资源广域电压自趋优管控方法,通过可再生能源发电、储能及柔性负荷等分布式资源的综合协同控制,在保证储能后备容量和降低网损的同时能够提高配电网广域电压质量。最后,以某城市配电网为例验证了所提方法的有效性和先进性,比传统调压方法更加契合新型配电系统的电压调控需求。
Differing from the traditional distribution network which is a pure power distribution system,the novel distribution system gradually shows the form of a large complex system with strong coupling and strong correlation of generation-grid-load-storage.These resources show the characteristics of wide-area distribution with many points,wide area and small amount.It is of great significance to explore the wide-area voltage regulation potential of distributed resources such as renewable energy generation,distributed energy storage and flexible load to the novel distribution system.A wide-area voltage self-optimization control method considering distributed genration-grid-load-storage for data-driven novel distribution system is proposed,the wide-area voltage quality of distribution network is improved through integrated cooperative control of these distributed resources,which can ensure backup capacity of energy storage and reduce network loss at the same time.Finally,taking an urban distribution network for example,the effectiveness and advancement of the proposed method are verified,which is more suitable for the voltage regulation requirements of novel distribution system than the traditional voltage regulation method.
作者
卢宇
向月
刘俊勇
曾平良
LU Yu;XIANG Yue;LIU Junyong;ZENG Pingliang(Sichuan Province Key Lab of Smart Grid(Sichuan University),Chengdu 610065,Sichuan,China;Engineering Laboratory of Regional Energy Internet Technology(Hangzhou Dianzi University),Hangzhou 310018,Zhejiang,China)
出处
《四川电力技术》
2023年第3期1-8,26,共9页
Sichuan Electric Power Technology
基金
国家自然基金项目(U2166211,52177103)。
关键词
新型配电系统
广域电压控制
分布式源网荷储资源
深度强化学习
novel distribution system
wide-area voltage control
distributed generation-grid-load-storage resources
deep reinforcement learning