期刊文献+

中国陆域植被指数UNVI多维数据产品(2018-2021)

China's Terrestrial UNVI Multidimensional Dataset(2018-2021)
原文传递
导出
摘要 中国陆域植被指数UNVI(Universal Normalized Vegetation Index)多维数据集产品通过MODIS地表反射率产品MOD09GA,基于通用模式分解算法UPDM(Universal Pattern Decomposition Method)以16天为合成周期计算而成,相较于传统NDVI产品,UNVI在反映植被覆盖变化和植被理化参量的定量反演方面更有优势。合成算法以合成周期内无云数据天数N为判断条件,以角度归一化合成法、有限视角内最大值合成法)、直接计算法以及最大值合成法MVC作为主要合成算法进行UNVI的计算,从而完成时间分辨率为16天、空间分辨率约为463m的2018-2021年中国陆域植被指数UNVI产品的合成。UNVI数据的存储格式为MDD多维数据格式(Multi-Dimensional Dataset),该数据集包含2018-2021年以16天为间隔的23个时相的中国陆域范围植被指数UNVI产品。 Vegetation index data products are widely used in the inversion of physical and chemical parameters of vegetation,land cover classification and change studies.Traditional vegetation index products,such as AVHRR-NDVI,are sensitive to soil background changes and have the problem of high value saturation,which easily causes a decrease in sensitivity to vegetation detection.China's terrestrial UNVl multidimensional dataset(2018-2021)was developed based on the MODIS surface reflectance product MODo9GA using the Universal Pattern Decomposition algorithm UPDM(Universal Pattern Decomposition Method),which takes 16 days as the synthesis cycle.The practices show that the UNVI has more advantages in reflecting the change in vegetation cover and quantitative inversion of vegetation physical and chemical parameters compared with traditional NDVI products.The synthesis algorithm takes the number of days without cloud data in the synthesis period N as the judgment condition and uses the angle normalized synthesis method,the maximum synthesis method in a limited perspective,the direct calculation method and the maximum synthesis method MvC as the main synthesis algorithm to calculate the UNVI.Thus,the 2018-2021 China terrestrial UNVI products with a time resolution of 16 d and a spatial resolution of approximately 463 m were synthesized.The dataset includes the UNVI products of China terrestrial vegetation indices in 23 time periods with 16 d intervals from 2018 to 2021.UNVI vegetation index products can provide more comprehensive and convenient long-time series vegetation index data products for scholars participating in research on global change and human activities.
作者 赵恒谦 刘轩绮 张立福 陈家华 付含聪 马可 Zhao,H.Q.;Liu,X.Q.;Zhang,L.F.;Chen,J.H.;Fu,H.C.;Ma,K.(College of Geoscience and Surveying Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China;Aerospace Information Research Institute,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100101,China)
出处 《全球变化数据学报(中英文)》 CSCD 2022年第4期645-655,V0645-V0655,共22页 Journal of Global Change Data & Discovery
基金 教育部(2022JCCXDC01) 中国矿业大学(北京)(2020QN07)。
关键词 UNVI MODIS 植被指数 角度归一化合成 长时间序列 UNVI MODIS vegetation index BRDF-C long time series
  • 相关文献

参考文献6

二级参考文献96

  • 1CHEN Liangfu,LIU Qinhuo,FAN Wenjie,LI Xiaowen,XIAO Qing,YAN Guangjian,TIAN Guoliang.A bi-directional gap model for simulating the directional thermal radiance of row crops[J].Science China Earth Sciences,2002,45(12):1087-1098. 被引量:12
  • 2Qi J,Remote Sens Environ,1993年,44卷,89页
  • 3Muramatsu K, Furumi S, Fujiwara N, et al. Pattern Decomposition Method in the Albedo Space for Landsat TM and MSS Data Analysis. International Journal of Remote Sensing, 1996, 21(1):99~119.
  • 4Daigo M, Ono A, Fujiwara N, et al. Pattern Decomposition Method for Hyper-multi-spectral Data Analysis. International Journal of Remote Sensing, 2004, 25(6): 1 153~1 166.
  • 5Furumi S, Hayashi A, Murumatsu K, et al. Relation Between Vegetation Vigor and New Vegetation Index Based on Pattern Decomposition Method. Journal of Remote Sensing Society of Japan, 1998, 18(3):17~34.
  • 6Hayashi A, Muramatsu K, Furumi S, et al. An Algorithm and a New Vegetation Index for ADEOS-II/GLI Data Analysis. Journal of Remote Sensing Society of Japan, 1998, 18(2):28~50.
  • 7Adams J B, Sabol D E, Kapos V, et al. Classification of Multispectral Images Based on Fractions of Endmembers: Application to Land-Cover Change in the Brazilian Amazon. Remote Sensing of Environment, 1995(52):137~154.
  • 8Fujiwara N, Muramatsu K, Awa S, et al. Pattern Expansion Method for Satellite Data Analysis. Journal of Remote Sensing Society of Japan, 1996, 17(3): 17~37(In Japanese).
  • 9Pearson R L, Miller L D. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Short-grass Prairie[C]//Proceedings of the 8th International Symposium on Remote Sensing of Environmet, Environmental Research Institute of Michigan, Ann Arbor, 1972 : 1357 1381.
  • 10Roy D P. Investigation of the Maximum Normalized Difference Vegetation Index (NDVI) and the Maximum Surface Tem- perature (Ts) AVHRR Compositing Procedures for the Ex- traction of NDVI and Ts over Forest[J]. International Journal of Remote Sensing, 1997,18(11) :2383-2401.

共引文献597

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部