期刊文献+

Characterizations of the BMO and Lipschitz Spaces via Commutators on Weak Lebesgue and Morrey Spaces

原文传递
导出
摘要 We prove that the weak Morrey space W M_(q)^(p) is contained in the Morrey space M_(q1)^(p) for 1 ≤ q1<q ≤ p < ∞. As applications, we show that if the commutator [b, T ] is bounded from L^(p) to L^(p,∞) for some p ∈(1, ∞), then b ∈ BMO, where T is a Calderón-Zygmund operator. Also, for 1 < p ≤ q < ∞, b ∈ BMO if and only if [b, T ] is bounded from M_(q)^(p) to WM_(q)^(p). For b belonging to Lipschitz class, we obtain similar results.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2023年第3期583-590,共8页 应用数学学报(英文版)
基金 supported by the National Natural Science Foundation of China (No.12101010) the Natural Science Foundation of Anhui Province (No.2108085QA19)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部