期刊文献+

Floral trait variation across individual plants within a population enhances defense capability to nectar robbing

下载PDF
导出
摘要 Floral trait variation may help pollinators and nectar robbers identify their target plants and,thus,lead to differential selection pressure for defense capability against floral antagonists.However,the effect of floral trait variation among individuals within a population on multi-dimensional plant-animal interactions has been little explored.We investigated floral trait variation,pollination,and nectar robbing among individual plants in a population of the bumble bee-pollinated plant,Caryopteris divaricata,from which flowers are also robbed by bumble bees with varying intensity across individuals.We measured the variation in corolla tube length,nectar volume and sugar concentration among individual plants,and evaluated whether the variation were recognized by pollinators and robbers.We investigated the in-fluence of nectar robbing on legitimate visitation and seed production per fruit.We found that the primary nectar robber(Bombus nobilis)preferred to forage on plants with long-tubed flowers,which produced less nectar and had lower sugar concentration compared to those with shorter corolla tubes.Individuals with shorter corolla tubes had comparatively lower nectar robbing intensity but higher visitation by legitimate visitors(mainly B.picipes)and higher seed production.Nectar robbing signifi-cantly reduced seed production because it decreased pollinator visits.However,neither pollination nor seed production differed between plants with long and short corolla tubes when nectar robbers were excluded.This finding suggests that floral trait variation might not be driven by pollinators.Such variation among individual plants thus allows legitimate visitors and nectar robbers to segregate niches and enhances population defense against nectar robbing in unpredictable conditions.
出处 《Plant Diversity》 SCIE CAS CSCD 2023年第3期315-325,共11页 植物多样性(英文版)
基金 The research was supported by the National Natural Science Foundation of China(No.31970253 and 32270243) the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB31010000) AL was also supported by a Ramon y Cajal contract(RYC-2015-19034)from the Spanish Ministry of Science,Innovation and Universities,the Spanish State Research Agency,European Social Funds(ESF invests in your future)and the University of the Balearic Islands,and by the project PRPPID2020-117863RB-I00 financed by the Spanish Ministry of Science and Innovation and the Spanish Research Agency(MCIN/AEI/10.13039/501100011033).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部