摘要
为了实现室内人员的跌倒检测,提出一种基于毫米波雷达的跌倒检测(Human Fall Detection,HFD)算法。首先,利用环境杂波滤除算法去除雷达数据的杂波信号;其次,在三维笛卡尔坐标系中利用参考质心聚类算法和躯干特征算法得到人物质心状态向量;最后,利用连续径向基情感神经网络(Continuous Radial Basis Emotional Neural Network,CRBENN)推断算法判断人物是否跌倒。实验结果表明,该算法能够在多种动作中实现人物跌倒判断及其定位,其检测准确率为99.28%,数据处理时间不超过35.8 ms,体现出了较好的准确性和实时性。
In order to realize indoor fall detection,a human fall detection(HFD)algorithm based on millimeter wave radar is proposed.Firstly,environmental clutter filtering algorithm is used to filter the clutter signal of radar data.Secondly,reference centroid clustering algorithm and trunk feature algorithm are employed to obtain the state vector of centroid in three dimensional Cartesian Coordinate System.Finally,inference algorithm of continuous radial basis emotional neural network is applied to judge whether the person falls.The experimental results show that the algorithm can judge and locate people's fall in many different actions with the detection accuracy of 99.28%and processing time of less than 35.8 ms,demonstrating good accuracy as well as real-time performance.
作者
刘树博
赖招宇
罗先喜
李跃忠
李智
LIU Shu-bo;LAI Zhao-yu;LUO Xian-xi;LI Yue-zhong;LI Zhi(Jiangxi Industrial Technology Research Institute of Rehabilitation Assistance,East China University of Technology,Nanchang 330013,China;School of Mechanical and Electronic Engineering,East China University of Technology,Nanchang 330013,China)
出处
《中国电子科学研究院学报》
北大核心
2023年第3期203-212,共10页
Journal of China Academy of Electronics and Information Technology
基金
国家自然科学基金资助项目(62141102)
江西省自然科学基金资助项目(20202BAB202008)
江西省重点研发计划项目(20212BBE53033)
教育部第二批协同育人项目(202102405010)。
关键词
毫米波雷达
参考质心聚类算法
情感神经网络
跌倒推断
millimeter wave radar
reference centroid clustering algorithm
emotional neural network
fall inference