摘要
针对由于旋转机械故障噪声的复杂性,造成从传声器阵列所采集到的信息中很难提取到噪声源所包含的故障信息的问题,利用波束成形对实验设备进行噪声源识别与定位,根据故障点位置信息将广义旁瓣抵消器算法(GSC)中的阻塞矩阵构造为具有指向性功能,而后利用其算法重构出故障点声信号,从该信号中提取故障信息,进行故障诊断。为验证该信号处理方法的有效性,通过仿真和实验得出该方法可以有效减少传统波束形成算法产生的信号泄露,提高输出信号的信噪比。
For the rotating machinery of fault noise has complexity,it is difficult to extract the fault information contained in the noise source from microphone array collected signals.In this paper,beamforming is used to identify and locate the noise source of experimental equipment.The blocking matrix in the generalized sidelobe canceller algorithm(GSC)is constructed with directivity according to the point of noise source,then the sound signal of the fault point is reconstructed by GSC,making diagnose the fault by extracting the fault characteristics from signal.To verify the effectiveness of the signal processing method,simulation and experiment results show that this method can effectively reduce the signal leakage generated by the traditional beamforming algorithm and improve the signal noise to ratio of the output signal.
作者
唐兴潮
伍星
柳小勤
王之海
TANG Xingchao;WU Xing;LIU Xiaoqin;WANG Zhihai(Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650504,China)
出处
《机械科学与技术》
CSCD
北大核心
2023年第7期1098-1102,共5页
Mechanical Science and Technology for Aerospace Engineering
基金
国家自然科学基金项目(51875272)。
关键词
波束形成
广义旁瓣相消器
信号处理
信噪比
beamforming
generalized sidelobe canceller
signal processing
signal to noise ratio