期刊文献+

广义旁瓣抵消器算法的轴承噪声信号增强研究 被引量:1

Research on Bearing Fault Signal Enhancement Using Generalized Sidelobe Canceller Algorithm
下载PDF
导出
摘要 针对由于旋转机械故障噪声的复杂性,造成从传声器阵列所采集到的信息中很难提取到噪声源所包含的故障信息的问题,利用波束成形对实验设备进行噪声源识别与定位,根据故障点位置信息将广义旁瓣抵消器算法(GSC)中的阻塞矩阵构造为具有指向性功能,而后利用其算法重构出故障点声信号,从该信号中提取故障信息,进行故障诊断。为验证该信号处理方法的有效性,通过仿真和实验得出该方法可以有效减少传统波束形成算法产生的信号泄露,提高输出信号的信噪比。 For the rotating machinery of fault noise has complexity,it is difficult to extract the fault information contained in the noise source from microphone array collected signals.In this paper,beamforming is used to identify and locate the noise source of experimental equipment.The blocking matrix in the generalized sidelobe canceller algorithm(GSC)is constructed with directivity according to the point of noise source,then the sound signal of the fault point is reconstructed by GSC,making diagnose the fault by extracting the fault characteristics from signal.To verify the effectiveness of the signal processing method,simulation and experiment results show that this method can effectively reduce the signal leakage generated by the traditional beamforming algorithm and improve the signal noise to ratio of the output signal.
作者 唐兴潮 伍星 柳小勤 王之海 TANG Xingchao;WU Xing;LIU Xiaoqin;WANG Zhihai(Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650504,China)
出处 《机械科学与技术》 CSCD 北大核心 2023年第7期1098-1102,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(51875272)。
关键词 波束形成 广义旁瓣相消器 信号处理 信噪比 beamforming generalized sidelobe canceller signal processing signal to noise ratio
  • 相关文献

参考文献1

二级参考文献10

  • 1Griffiths L J, Jim C W. An alternative approach to linearly constrained adaptive beamforming[J]. IEEE Transactions on Antennas and Propagation, 1982, 30(1): 27-34.
  • 2Affes S, Grenier Y. A signal subspace tracking algorithm for microphone array processing of speechl-J-. IEEE Transactions on Speech Audio Processing, 1997, 5(1):425-437.
  • 3Gannot S, Burshtein D, Weinstein E. Signal enhancement using beamforming and nonstationarity with applications to speech[J]. IEEE Transactions on Signal Processing, 2001, 49(8): 1614-1626.
  • 4Warsitz E, Krueger A, Umbach R H. Speech enhancement with a new generalized eigenvector blocking matrix for application in a generalized sidelobe canceller [C]//Proceedings of 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas: IEEE, 2008: 73-76.
  • 5Krueger A, Warsitz E, Umbach R.H. Speech enhancement with a GSC-like structure employing eigenvector based transfer function ratios estimation [J].IEEE Transactions on Audio, Speech and Language Processing, 2010, 19(1) :1-14.
  • 6Souden M, Benesty J, Affes S. Microphone arrays for noise reduction with low signal distortion in room acoustics [C]//Proceedings of 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas: IEEE, 2008: 77-80.
  • 7Hansen Y T, John H L. An efficient microphone array based voice activity detector for driver's speech in noise and music rich in-vehicle environments[C]// Proceedings of 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. Dallas: [s.n.], 2010: 2834-2837.
  • 8Abutalebi H R, Dashtbozorg B, Zare T. Speech enhancement use hybrid generalized sidelobe canceller and spectral estimator[C]//Proceedings of 2008 International Symposium on Telecommunications. Tehran:[s.n.], 2008: 564-569.
  • 9Allen J, Berkley D. Image method for efficiently simulating small-room acoustic [J].J Acoust Soc Amer, 1979, 65(1): 943-950.
  • 10Itakura F, Saito S. A statistical method for estimation of speech spectral density and formant frequencies[J]. Electron Commun, 1970, 53A: 36-43.

共引文献5

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部