期刊文献+

Study of the Flow Mechanism of Wind Turbine Blades in the Yawed Condition

下载PDF
导出
摘要 The computational fluid dynamics method was used to simulate the flow field around a wind turbine at the yaw angles of 0°,15°,30°,and 45°.The angle of attack and the relative velocity of the spanwise sections of the blade were extracted with the reference points method.By analyzing the pressure distribution and the flow characteristics of the blade surface,the flow mechanism of the blade surface in the yawed condition was discussed.The results showed that the variations of the angle of attack and the relative velocity were related to the azimuth angle and the radius in the yawed condition.The larger the yaw angle was,the larger the variation was.The pressure distribution in the spanwise sections was affected by both the angle of attack and the relative velocity.The angle of attack was more influential than the relative velocity.At the same yaw angle,when the angle of attack decreased,the c_(p)∼x/c curve shrunk inward and the lift force decreased.The larger the yaw angle was,the more obvious the shrink was.The effect of the yaw on the blade root region was higher than its effect on the blade tip region.
出处 《Energy Engineering》 EI 2022年第4期1379-1392,共14页 能源工程(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部