期刊文献+

一类时滞自催化可逆生化反应模型的Hopf分支及其稳定性 被引量:1

Hopf bifurcation and stability for an autocatalytic reversible biochemical reaction model with time delay
下载PDF
导出
摘要 基于Hopf分支理论,研究一类具有时滞效应的自催化三分子可逆生化反应模型.以时滞τ为参数,建立正常数平衡点的稳定性和Hopf分支的存在性.利用中心流形定理和规范型理论,给出Hopf的分支方向和稳定性判定条件.借助数值模拟,验证理论分析结果. Based on the Hopf bifurcation theory,an autocatalytic three-molecular reversible biochemical reaction model with time delay is considered.First,the stability of the equilibrium and the existence of Hopf bifurcation are obtained by choosing the delayτas parameter.Secondly,the direction and stability of Hopf bifurcation are determined by the normal form theory and the center manifold theorem.Finally,some numerical simulations are presented to verify the theoretical results.
作者 郭飞燕 郭改慧 GUO Fei-yan;GUO Gai-hui(School of Mathematics&Data Science,Shaanxi University of Science and Technology,Xi’an 710021,China)
出处 《兰州理工大学学报》 CAS 北大核心 2023年第3期147-152,共6页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(61872227)。
关键词 可逆生化反应 HOPF分支 稳定性 时滞 reversible biochemical reaction Hopf bifurcation stability delay
  • 相关文献

参考文献6

二级参考文献12

  • 1Wang H Y. Positive periodic solutions of functional differential equations[J]. Journal of Differential Equa- tions, 2004, 202(2): 354-366.
  • 2Chen R P, Ma R Y, He Z Q. Positive periodic solutions of first-order singular systems[J]. Applied Mathe- matics and Computation, 2012, 218(23): 11421-11428.
  • 3Wang H Y. Positive periodic solutions of singular systems of first order ordinary differential equations[J]. Applied Mathematics and Computation, 2011, 218(5): 1605-1610.
  • 4Weng A Z, Sun J T. Impulsive stabilization of second-order nonlinear delay differential systems[J]. Applied Mathematics and Computation, 2009, 214(1): 95-101.
  • 5Weng A Z, Sun J T. Positive periodic solutions of first-order functional differential equations with param- eter[J]. Journal of Computational and Applied Mathematics, 2009, 229(1): 327-332.
  • 6Rudolf O. Positive periodic solutions of delay differential equations[J]. Applied Mathematics Letters, 2013, 26(12): 1141-1145.
  • 7Shi B, Zhang D C, Gai J M. Theory and Applications of Differential Equations[M]. Beijing: National Defense Industry Press, 2005.
  • 8SUNITA GAKKHAR,ANURAJ SINGH,BRAHAM PAL SINGH.EFFECTS OF DELAY AND SEASONALITY ON TOXIN PRODUCING PHYTOPLANKTON-ZOOPLANKTON SYSTEM[J].International Journal of Biomathematics,2012,5(5):239-259. 被引量:5
  • 9Liyuan WANG,Ge GUO,Yan ZHUANG.Stabilization of NCSs by random allocation of transmission power to sensors[J].Science China(Information Sciences),2016,59(6):244-256. 被引量:4
  • 10周军.一类具有自动催化作用和饱和定律的双分子模型的图灵不稳定性和霍普夫分歧[J].数学物理学报(A辑),2017,37(2):366-373. 被引量:2

共引文献12

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部