期刊文献+

结合文本与用户信息的微博谣言检测方法研究 被引量:1

Research on Micro-blog Rumor Detection Method Based on Text and User Information
下载PDF
导出
摘要 微博已成为人们获取信息的重要来源,但微博中也充斥着大量网络谣言,会对个人和社会造成严重危害。由于谣言的模糊性和隐蔽性,导致微博谣言的自动识别非常困难,这给微博监管带来极大挑战。针对微博谣言的文本信息,构建了句子级细粒度的情感分类算法,对微博评论进行情感倾向性分析,计算负面情感评论比例;同时结合微博的用户信息,分析微博转发和评论列表,判断是否有潜在辟谣用户参与,并利用发文用户的等级、信用等信息,定义并计算用户信誉值;最后训练分类器并完成对微博未知样本的预测。实验结果表明,所提出的新特征能有效提高微博谣言检测的准确率。 While micro-blog has become an important source for people to obtain information,there are also a large number of internet rumors,which can cause serious harm to individuals and society.Because of the fuzziness and concealment of rumors,the automatic identification of micro-blog rumors is very difficult,which brings great challenges to micro-blog′s supervision.For the text information of rumors,this paper constructed a new classification method of sentence level fine-grained emotion,and used this method to analyze the emotional orientation of comments,and then calculated the proportion of negative emotional comments.Combined with user information at the same time,it analyzed the retweet lists and comment lists,and judged whether there were potential authoritative users that participated in the propagation process of rumors.Moreover,it defined and calculated user reputation value by using the information of the user′s grade and credit.Finally,the classifier was trained and the prediction of unknown micro-blog samples was completed.The experimental results show that the new features proposed can effectively improve the accuracy of micro-blog rumors detection.
作者 陈书雨 段长江 雍振煌 姚寒冰 CHEN Shuyu;DUAN Changjiang;YONG Zhenhuang;YAO Hanbing(Centre for Multidisciplinary and Intercultural Inquiry,University College London,London W55RF,Britain;不详)
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2023年第3期442-448,共7页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 武汉理工大学重庆研究院科技创新研发项目(YF2021-10).
关键词 微博谣言 文本信息 情感分类 用户信息 谣言检测 micro-blog rumor text information sentiment analysis user information rumors detection
  • 相关文献

参考文献8

二级参考文献95

  • 1林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 2M.Q. Hu, B. Liu. Mining and Summarizing Custom- er Reviews[C]//ACM SIGKDD 2004.. 168-177.
  • 3Bo Pang, Lillian Lee. Opinion mining and sentiment a- nalysis[C]//Foundations and Trends in Information Retrieval, 2(1-2):1-135.
  • 4M.Q. Hu, B. Liu. Opinion Extraction and Summari- zation on the Web[C]//AAAI06, Boston: 1621-1624.
  • 5H. Yu, V. Hatzivassiloglou. Towards Answering O- pinion Question: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences[C]// EMNLP'03 : 129-136.
  • 6Bo Pang, Lillian Lee, Shivakumar Vaithyanathan. Thumbs up? sentiment classification using machine learning techniques[C]//ACL'02: 79-86.
  • 7Bo Pang, Lillian Lee. A sentimental education: Senti- ment analysis using subjectivity summarization based on minimum cuts[C]//ACL'04: 271-278.
  • 8E. Riloff, J. Wiebe. 2003. Learning extraction pat-terns for subjective expressions[C]//EMNLP'03: 105- 112.
  • 9Glance, N. , M. Hurst, K. Nigam, et al. 2005. Deri- ving marketing intelligence from online discussion [C]//SIGKDD'05 : 419-428.
  • 10Wilson, T. , J. Wiebe, P. Hoffmann. 2005. Recog- nizing contextual polarity in phrase-level sentiment a- nalysis[C]//HLT-EMNLP'05 .. 347-354.

共引文献651

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部