期刊文献+

Breast Mammogram Analysis and Classification Using Deep Convolution Neural Network 被引量:1

下载PDF
导出
摘要 One of the fast-growing disease affecting women’s health seriously is breast cancer.It is highly essential to identify and detect breast cancer in the earlier stage.This paper used a novel advanced methodology than machine learning algorithms such as Deep learning algorithms to classify breast cancer accurately.Deep learning algorithms are fully automatic in learning,extracting,and classifying the features and are highly suitable for any image,from natural to medical images.Existing methods focused on using various conventional and machine learning methods for processing natural and medical images.It is inadequate for the image where the coarse structure matters most.Most of the input images are downscaled,where it is impossible to fetch all the hidden details to reach accuracy in classification.Whereas deep learning algorithms are high efficiency,fully automatic,have more learning capability using more hidden layers,fetch as much as possible hidden information from the input images,and provide an accurate prediction.Hence this paper uses AlexNet from a deep convolution neural network for classifying breast cancer in mammogram images.The performance of the proposed convolution network structure is evaluated by comparing it with the existing algorithms.
出处 《Computer Systems Science & Engineering》 SCIE EI 2022年第10期275-289,共15页 计算机系统科学与工程(英文)
  • 相关文献

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部