期刊文献+

Object Detection in Remote Sensing Images Using Picture Fuzzy Clustering and MapReduce 被引量:1

下载PDF
导出
摘要 In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usually havelarge size and various spatial resolutions. Thus, detecting objects in remote sensing images is very complicated. In this paper, we develop a model to detectobjects in remote sensing images based on the combination of picture fuzzy clustering and MapReduce method (denoted as MPFC). Firstly, picture fuzzy clustering is applied to segment the input images. Then, MapReduce is used to reducethe runtime with the guarantee of quality. To convert data for MapReduce processing, two new procedures are introduced, including Map_PFC and Reduce_PFC.The formal representation and details of two these procedures are presented in thispaper. The experiments on satellite image and remote sensing image datasets aregiven to evaluate proposed model. Validity indices and time consuming are usedto compare proposed model to picture fuzzy clustering model. The values ofvalidity indices show that picture fuzzy clustering integrated to MapReduce getsbetter quality of segmentation than using picture fuzzy clustering only. Moreover,on two selected image datasets, the run time of MPFC model is much less thanthat of picture fuzzy clustering.
出处 《Computer Systems Science & Engineering》 SCIE EI 2022年第12期1241-1253,共13页 计算机系统科学与工程(英文)
基金 funded by Thuyloi University Foundation for Science and Technologyunder Grant Number TLU.STF.19-02.
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部