期刊文献+

X-Ray Covid-19 Detection Based on Scatter Wavelet Transform and Dense Deep Neural Network

下载PDF
导出
摘要 Notwithstanding the discovery of vaccines for Covid-19, the virus'srapid spread continues due to the limited availability of vaccines, especially inpoor and emerging countries. Therefore, the key issues in the presentCOVID-19 pandemic are the early identification of COVID-19, the cautiousseparation of infected cases at the lowest cost and curing the disease in the earlystages. For that reason, the methodology adopted for this study is imaging tools,particularly computed tomography, which have been critical in diagnosing andtreating the disease. A new method for detecting Covid-19 in X-rays and CTimages has been presented based on the Scatter Wavelet Transform and DenseDeep Neural Network. The Scatter Wavelet Transform has been employed as afeature extractor, while the Dense Deep Neural Network is utilized as a binaryclassifier. An extensive experiment was carried out to evaluate the accuracy ofthe proposed method over three datasets: IEEE 80200, Kaggle, andCovid-19 X-ray image data Sets. The dataset used in the experimental part consists of 14142. The numbers of training and testing images are 8290 and 2810,respectively. The analysis of the result refers that the proposed methods achievedhigh accuracy of 98%. The proposed model results show an excellent outcomecompared to other methods in the same domain, such as (DeTraC) CNN, whichachieved only 93.1%, CNN, which achieved 94%, and stacked Multi-ResolutionCovXNet, which achieved 97.4%. The accuracy of CapsNet reached 97.24%.
机构地区 Informatics Department
出处 《Computer Systems Science & Engineering》 SCIE EI 2022年第6期1255-1271,共17页 计算机系统科学与工程(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部