期刊文献+

Automated Deep Learning Based Cardiovascular Disease Diagnosis Using ECG Signals

下载PDF
导出
摘要 Automated biomedical signal processing becomes an essential process to determine the indicators of diseased states.At the same time,latest develop-ments of artificial intelligence(AI)techniques have the ability to manage and ana-lyzing massive amounts of biomedical datasets results in clinical decisions and real time applications.They can be employed for medical imaging;however,the 1D biomedical signal recognition process is still needing to be improved.Electrocardiogram(ECG)is one of the widely used 1-dimensional biomedical sig-nals,which is used to diagnose cardiovascular diseases.Computer assisted diag-nostic modelsfind it difficult to automatically classify the 1D ECG signals owing to time-varying dynamics and diverse profiles of ECG signals.To resolve these issues,this study designs automated deep learning based 1D biomedical ECG sig-nal recognition for cardiovascular disease diagnosis(DLECG-CVD)model.The DLECG-CVD model involves different stages of operations such as pre-proces-sing,feature extraction,hyperparameter tuning,and classification.At the initial stage,data pre-processing takes place to convert the ECG report to valuable data and transform it into a compatible format for further processing.In addition,deep belief network(DBN)model is applied to derive a set of feature vectors.Besides,improved swallow swarm optimization(ISSO)algorithm is used for the hyper-parameter tuning of the DBN model.Lastly,extreme gradient boosting(XGBoost)classifier is employed to allocate proper class labels to the test ECG signals.In order to verify the improved diagnostic performance of the DLECG-CVD model,a set of simulations is carried out on the benchmark PTB-XL dataset.A detailed comparative study highlighted the betterment of the DLECG-CVD model interms of accuracy,sensitivity,specificity,kappa,Mathew correlation coefficient,and Hamming loss.
出处 《Computer Systems Science & Engineering》 SCIE EI 2022年第7期183-199,共17页 计算机系统科学与工程(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部