期刊文献+

High‑Temperature Electrochemical Devices Based on Dense Ceramic Membranes for CO_(2) Conversion and Utilization

原文传递
导出
摘要 The adverse effects of global warming and climate change have driven the exploration of feasible routes for CO_(2) capture,storage,conversion and utilization.The processes related to CO_(2) conversion in high-temperature electrochemical devices(HTEDs)using dense ceramic membranes are particularly appealing due to the simultaneous realization of highly efficient CO_(2) conversion and value-added chemical production as well as the generation of electricity and storage of renewable energy in some cases.Currently,most studies are focused on the two processes,CO_(2) electrolysis and H2O/CO_(2) co-electrolysis in oxygen-conducting solid oxide electrolysis cell(O-SOEC)reactors.Less attention has been paid to other meaningful CO_(2)-conversion-related processes in HTEDs and systematic summary and analysis are currently not available.This review will fill the gap and classify the CO_(2)-conversion-related processes in HTEDs reported in recent years into four types accord-ing to the related reactions,including assisted CO_(2) reduction to CO,H2O and CO_(2) co-conversion,dry reforming of methane and CO_(2) hydrogenation.Firstly,an overview of the fundamentals of HTED processes is presented,and then the related mechanism and research progress of each type of reactions in different HTEDs are elucidated and concluded accordingly.The remaining major technical issues are also briefly introduced.Lastly,the main challenges and feasible solutions as well as the future prospects of HTEDs for CO_(2)-conversion-related processes are also discussed in this review.
出处 《Electrochemical Energy Reviews》 SCIE EI 2021年第3期518-544,共27页 电化学能源评论(英文)
基金 supported by the Natural Sciences and Engineering Research Council of Canada,the Discovery Grant(GRPIN-2016-05494) the Alberta Innovates Technology Futures Research Grant.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部