期刊文献+

Stochastic Gradient Boosting Model for Twitter Spam Detection

下载PDF
导出
摘要 In today’s world of connectivity there is a huge amount of data than we could imagine.The number of network users are increasing day by day and there are large number of social networks which keeps the users connected all the time.These social networks give the complete independence to the user to post the data either political,commercial or entertainment value.Some data may be sensitive and have a greater impact on the society as a result.The trustworthiness of data is important when it comes to public social networking sites like facebook and twitter.Due to the large user base and its openness there is a huge possibility to spread spam messages in this network.Spam detection is a technique to identify and mark data as a false data value.There are lot of machine learning approaches proposed to detect spam in social networks.The efficiency of any spam detection algorithm is determined by its cost factor and accuracy.Aiming to improve the detection of spam in the social networks this study proposes using statistical based features that are modelled through the supervised boosting approach called Stochastic gradient boosting to evaluate the twitter data sets in the English language.The performance of the proposed model is evaluated using simulation results.
出处 《Computer Systems Science & Engineering》 SCIE EI 2022年第5期849-859,共11页 计算机系统科学与工程(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部