期刊文献+

基于正面信息源影响力最大化的舆情共演模型

Public opinion co-performance model based on maximizing influence of positive information sources
下载PDF
导出
摘要 随着移动社交网络平台的普及,个体通过移动设备迅速地接收、传播和交流信息,也使得真假不一的信息在这些平台上广泛传播,加剧了危机传播的频度和广度.基于正面信息源的影响力最大化,构建一个强关系与弱关系社交平台共演传播模型,以探索利用社交网络中的影响力个体来提升正面信息的传播效率.系统仿真试验发现,信息对个体影响度及弱关系社交层的信息传播效率在网络舆情共演过程中起着关键作用,增加影响力个体的比例可以减缓或抑制舆情进一步发酵,从而提升公共危机管理水平. With the popularity of mobile social networking platforms,individuals can rapidly receive,disseminate and communicate information through mobile devices.However,the widespread dissemination of misinformation on these platforms exacerbates the frequency and extent of crisis propagation.Based on the maximization of the influence of positive information sources,a co-performance of strong-ties and weak-ties social platform(CSWSP)dissemination model was constructed,and the use of influential individuals in social networks to improve the dissemination efficiency of positive information was explored.Through systematic simulation experiments,it was found that the influence of information on individuals and the efficiency of information dissemination in the weak-ties social layer play a crucial role in the process of online crisis co-performance.Increasing the proportion of influential individuals can mitigate or suppress further escalation of public sentiment,thus enhancing public crisis management.
作者 李川 王雅琼 严瑛 陈敬良 LI Chuan;WANG Yaqiong;YAN Ying;CHEN Jingliang(Business School,University of Shanghai for Science and Technology,Shanghai 200093,China;School of Economic and Management,Shanghai University of Political Science and Law,Shanghai 201701,China)
出处 《上海工程技术大学学报》 CAS 2023年第1期88-95,共8页 Journal of Shanghai University of Engineering Science
基金 教育部人文社会科学研究青年基金项目资助(19YJCZH130,16YJCZH165)。
关键词 网络舆情 信息源影响力 危机治理 network public opinion information source influence crisis governance
  • 相关文献

参考文献1

二级参考文献14

  • 1Bakshy E,Eckles D,Yan R,et al.Social influence in socialadvertising:Evidence from field experiments[C].Proceedingsof the 13th ACM Conference on Electronic Commerce,Valencia,Spain,2012:146-161.
  • 2Li G,Chen S,Feng J,et al.Efficient location-aware influencemaximization[C].Proceedings of the 2014 ACM Conferenceon Management of Data,Snowbird,Utah,2014.
  • 3Luo Z L,Cai W D,Li Y J,et al.A pagerank-based heuristic algorithm for influence maximization in the social network[M].Recent Progress in Data Engineering and Internet Technology.Berlin Heidelberg:Springer,2012:485-490.
  • 4Chen W,Wang Y,Yang S.Efficient influence maximizationin social networks[C].Proceedings of the 15th ACMSIGKDD International Conference on Knowledge Discoveryand Data Mining,Paris,France,2009:199-208.
  • 5Zhu Y,Wu W,Bi Y,et al.Better approximation algorithmsfor influence maximization in online social networks[J].Journal of Combinatorial Optimization,2013,43(10):1-12.
  • 6Goyal A,Bonchi F,Lakshmanan L V S.A data-basedapproach to social influence maximization[J].Proceedingsof the VLDB Endowment,2011,5(1):73-84.
  • 7Chen Y,Chang S,Chou C,et al.Exploring communitystructures for influence maximization in social networks[C].Proceedings of the 6th SNA-KDD Workshop on SocialNetwork Mining and Analysis held in conjunction withKDD,Beijing,China,2012:1-12.
  • 8Yu H,Kim S K,Kim J.Scalable and parallelizable processingof influence maximization for large-scale socialnetworks[C].Proceedings of the 2013 IEEE InternationalConference on Data Engineering.[S.l.]:IEEE ComputerSociety,2013:266-277.
  • 9Galstyan A,Musoyan V,Cohen P,Maximizing influencepropagation in network with community structure[J].Physical Review E,2009,79(5):711-715.
  • 10Wang Y,Cong G,Song G,et al.Community-based greedyalgorithm for mining top-K influential nodes in mobilesocial network[C].Proceedings of the 16th ACM SIGKDDinternational conference on Knowledge discovery anddata mining.Washington,DC:ACM,2010:1039-1048.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部