期刊文献+

Compressible and Lightweight MXene/Carbon Nanofiber Aerogel with “Layer‑Strut” Bracing Microscopic Architecture for Efficient Energy Storage 被引量:1

原文传递
导出
摘要 Two-dimensional MXene has recently captured widespread research attention in energy storage and conversion fields due to its high conductivity,large specific surface area,and remarkable electro-activity.However,its performance is still hindered by severe self-restacking of MXene flakes.Herein,conductive Ti_(3)C_(2)T_(x)/carbon nanofiber(CNF)composite aerogel with typical“layer-strut”bracing 3D microscopic architecture has been fabricated via synergistic assembly and freeze-drying process.In virtu of the strong interfacial interaction between polymeric precursor nanofibers and MXene mono-layers,gelation capability and 3D formability of Ti_(3)C_(2)T_(x) is greatly reinforced,as resulted Ti_(3)C_(2)T_(x)/CNF aerogels possess a highly ordered microporous structure with interlayered CNF penetrating between large size MXene lamellae.This special configuration guarantees the stability and pliability of the composite aerogels.Furthermore,the 3D form interconnected conductive network and the parallell alignment of the pores allow free electrical carriers motion and ion migration.As a result,the prepared Ti_(3)C_(2)T_(x)/CNF aerogel-based electrode exhibits an exceptional gravimetric specific capacitance of 268 F g^(−1) at a current density of 0.5 A g^(−1) and an excellent cycling stability of 8000 cylcles,and the assembled symmetric supercapacitor,delivers a high energy density of 3.425 W h kg^(−1) at 6000 W kg^(−1).This work offers a new route for the rational construction of 3D MXene assembly for advanced energy storage materials.
出处 《Advanced Fiber Materials》 SCIE EI 2022年第4期820-831,共12页 先进纤维材料(英文)
基金 This work is financially supported by the National Natural Science Foundation of China(No.21875033) the Shanghai Scientific and Technological Innovation Project(No.18JC1410600) the Program of the Shanghai Academic Research Leader(No.17XD1400100) the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials(Donghua University).
  • 相关文献

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部