期刊文献+

Core-Sheath CeO_(2)/SiO_(2) Nanofibers as Nanoreactors for Stabilizing Sinter‑Resistant Pt,Enhanced Catalytic Oxidation and Water Remediation 被引量:1

原文传递
导出
摘要 One-dimensional(1D)oxide nanofibers have attracted much attention in recent years but are still hampered by the difficulty in the expansion to 2D or 3D dimensions.Herein,ultrathin CeO_(2)/SiO_(2)nanofibers with intriguing core-sheath structures were simply fabricated by a facile single-spinneret electrospinning method and were subsequently integrated as 2D nanofi-brous mats and 3D sponges.Introducing secondary oxide(i.e.,SiO_(2))could induce a unique fine structure and further inhibit the sintering of CeO_(2)nanocrystals,endowing the resultant dual-oxide nanofibers with high porosity,good flexibility,and enriched oxygen defects.Benefiting from the core-sheath structure and dual-oxide component,the CeO_(2)/SiO_(2)nanofibers could stabilize 2.59 nm-Pt clusters against sintering at 600℃.Once assembled into a 2D mat,the nanofibers could efficiently decrease the soot oxidation temperature by 63℃.Moreover,the core-sheath CeO_(2)/SiO_(2)nanofibers can be readily integrated with graphene nanosheets into a 3D sponge via a gas foaming protocol,showing 218.5 mg/g of adsorption capacity toward Rhodamine B molecules.This work shed lights on the versatile applications of oxide nanofibers toward clean energy ultili-zation and low-carbon development.
出处 《Advanced Fiber Materials》 SCIE EI 2022年第5期1278-1289,共12页 先进纤维材料(英文)
基金 This work was financially supported by the Natural Science Foundation of China(21975042) the Project of Six Talents Climax Foundation of Jiangsu(XCL-082) Innovation Platform Project Supported by Jiangsu Province(6907041203) the Young Talent Lifting Project of Jiangsu Science and Technology Associate,the Fundamental Research Funds for the Central Universities,the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_0261) the Priority Academic Program Development of Jiangsu Higher Education Institutions the open project of State Key Laboratory of Physical Chemistry of Solid Surfaces in Xiamen University.
  • 相关文献

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部