期刊文献+

交通流数据时空相关修复方法评价分析

Evaluating Alternative Temporal-spatial Correlated Imputation Methods for Traffic Flow Data
下载PDF
导出
摘要 文中选取了预测均值匹配、K近邻和贝叶斯时间矩阵分解三种时空相关数据修复方法,基于上海市中环路交通流数据,以时间相关方法为基准,评价分析不同缺失模式下不同方法的修复效果.结果表明:K近邻方法可有效追踪交通流的变化,修复精度和稳定性较好,时间相关和贝叶斯时间矩阵分解方法在特定场景可能失效.引入空间信息可有效提升修复精度,相邻检测器、上游检测器和下游检测器的数据对修复效果提升的贡献依次递减. Based on the selected three methods of time-space correlation data restoration:prediction mean matching,K nearest neighbor and Bayesian time matrix decomposition,according to the traffic flow data of Shanghai Zhonghuan Road,and taking the time correlation method as the benchmark,the restoration effects of different methods under different missing modes were evaluated and analyzed.The results show that the K-nearest neighbor method can effectively track the change of traffic flow,and the imputation accuracy and stability are good,and the time correlation and Bayesian time matrix decomposition methods may fail in certain scenes.The introduction of spatial information can effectively improve the restoration accuracy,and the contribution of the data of adjacent detectors,upstream detectors and downstream detectors to the improvement of the restoration effect decreases in turn.
作者 许书红 王雯雯 冯远宏 孙卓毅 暨育雄 XU Shuhong;WANG Wenwen;FENG Yuanhong;SUN Zhuoyi;JI Yuxiong(Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University,Shanghai 201804,China;Qingdao Hisense Network Polytron Technologies Inc.,Qingdao 266071,China)
出处 《武汉理工大学学报(交通科学与工程版)》 2023年第3期408-413,共6页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
关键词 数据修复 交通流 数据缺失 智能交通 data imputation traffic flow missing data intelligent transportation
  • 相关文献

参考文献5

二级参考文献32

  • 1陆化普,屈闻聪,孙智源.基于S-G滤波的交通流故障数据识别与修复算法[J].土木工程学报,2015,48(5):123-128. 被引量:16
  • 2张辉,刘嘉焜,柳湘月,郭晓泽.交通流的季节ARIMA模型与预报[J].天津大学学报(自然科学与工程技术版),2005,38(9):838-841. 被引量:17
  • 3SMITH B L, SCHERER W T, CONKIAN J H. Explorin1 imputation techniques for missing data in transportation man1 agement systems[J]. Transportation Research Record,I 2003(1836) : 132 142.
  • 4ZHONG Ming, I.INGRAS P, SHARMA S. Estimation of missing traffic counts using factor, genetic, neural, and regression techniques[J].Transportation Research Part C: Emerging Technologies, 2004, 12(2): 139-166.
  • 5WANG Yi-bing, PAPAGEORGIOU M. Real time freeway traffic state estimation based on extended Kalman fiher~ a general approach[J]. Transportation Research Part B: Meth odologieal, 2005, 39(2): 141-167.
  • 6TOBI.ER W R. A computer movie simulating urban growth in the Detroit Region[J].Economic Geography, 1970, 46(S): 234-240.
  • 7ZOU Hal xiang, YUE Yang, LI Qing-quan, et al. A spatial analysis approach for describing spatial pattern of urban trafficstate [C] ff IEEE. 13th International IEEE Annual Confer ence on Intelligent Transportation Systems. Madeira Island: IEEE, 2010:557-562.
  • 8BRAXMEIER H, SCHMIDT V, SPODAREV E. Kriged road traffic maps[C]//PILZ J. Interfacing Geostatistics and GIS. Berlin: Springer, 2009: 105-119.
  • 9HACKNEY J K, BERNARD M, BINDRA S, et al. Predicting road system speeds using spatial structure variables and network characteristics[J].Journal of Geographical Systems, 2007, 9(4): 397-417.
  • 10WANG Xiao-kun, KOCKELMAN K M. Forecasting network data: spatial interpolation of traffic counts using Texas data[J]. Transportation Research Record, 2009(2105): 100-108.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部