摘要
以大数据智能化为切入视角,基于K-means和C4.5决策树算法,构建了融合RPA的财务共享中心运营管理优化模型。结果显示,在绩效评价优化层面,聚类-1下绩效评价频率高且在90%以上,而聚类-2下频率相对较低且在70%~90%之间;在风险管控优化层面,训练数据集的预测准确率高达91.24%,而测试数据集的预测准确率达到74.16%;而在税务管理层面,优化后模型的AUC、CA以及Recall等性能指标均得到显著提高。结合K-means和C4.5决策树大数据智能算法构建的融合RPA的财务共享中心运营管理优化模型,既降低了财务共享中心运营管理成本,又充实了财务运营管理技术体系,继而全面提高了企业财务运营管理质量与水平。
From the perspective of big data intelligence,based on K-means and C4.5 decision tree algorithms,a financial sharing center operation and management optimization model integrating RPA was constructed.The results show that in terms of performance evaluation optimization,the frequency of performance evaluation under Cluster-1 is high and above 90%,while under Cluster-2,the frequency is relatively low and between 70%and 90%;In terms of risk control optimization,the prediction accuracy of the training dataset is as high as 91.24%,while the prediction accuracy of the test dataset is 74.16%;At the tax management level,the performance indicators such as AUC,CA,and Recall of the optimized model have been significantly improved.The integrated RPA financial sharing center operation and management optimization model,constructed by combining K-means and C4.5 decision tree big data intelligent algorithms,not only reduces the operation and management costs of the financial sharing center,but also enriches the financial operation and management technology system,thereby comprehensively improving the quality and level of enterprise financial operation and management.
作者
瞿明山
Qu Mingshan(Anhui Vocational and Technical College of Press and Publication,Hefei 230601,China)
出处
《黄山学院学报》
2023年第3期17-21,共5页
Journal of Huangshan University
基金
安徽省高等学校省级质量工程校企合作示范实训中心项目(2019xqsxzx79)
安徽省高校人文社会科学研究重点项目(SK2020A0895)
安徽新闻出版职业技术学院人文社科项目(PX-121207)。