期刊文献+

改进自适应惯性权重粒子群算法及其在核动力管道布置中的应用 被引量:8

Improved adaptive inertia weight PSO algorithm and its application in nuclear power pipeline layout optimization
下载PDF
导出
摘要 [目的]旨在研究非线性自适应惯性权重粒子群优化算法,实现船用核动力一回路系统管道路径的布置优化设计。[方法]根据船用核动力一回路系统的管道布局设计特点,建立一回路系统的管道布局空间模型、约束条件和评价函数;基于管道节点数量,提出一种粒子群优化(PSO)算法的新型定长编码方法,然后结合该编码方法建立方向引导机制;在此基础上,针对粒子群优化算法易陷入局部最优解、收敛速度慢的缺点,结合辅助线性变化的学习因子,提出一种基于非线性自适应惯性权重的改进粒子群优化算法;将改进粒子群优化算法与协同进化算法相结合,提出一种用于求解分支管道布局问题的协同进化粒子群优化算法,以用于核动力一回路系统的管道布局优化。[结果]仿真结果显示,所提的改进算法与标准算法相比收敛速度提高了40%~50%,不仅能够得到更好的管道布局效果,还解决了标准粒子群优化算法容易陷入局部最优解的问题。[结论]研究成果可为船用核动力一回路系统管道布置的优化设计提供有益的参考。 [Objectives]This study explores the use of a nonlinear adaptive inertia weight particle swarm op-timization(PSO)algorithm to realize the optimal design of the path and arrangement of pipelines in the nucle-ar power primary loop systems of ships.[Methods]According to the pipeline layout design characteristics,the constraints,evaluation functions and spatial model of the primary loop system are established.Based on the number of pipeline nodes,a new fixed-length coding method for the PSO algorithm is proposed,along with a direction guidance mechanism.As the standard PSO algorithm has such shortcomings as a slow conver-gence speed and susceptibility to falling into the local optimal solution,an improved nonlinear adaptive inertia weight PSO algorithm supplemented by a linearly changing learning factor is proposed.The improved PSO al-gorithm is combined with a co-evolutionary algorithm to form a co-evolutionary PSO algorithm for solving branch pipeline problems.The improved algorithm is then applied to the pipeline layout optimization problem of the nuclear power primary loop systems of ships.[Results]The simulation results show that the conver-gence speed of the proposed algorithm is increased by 40%–50%compared with that of the standard algorithm.The improved algorithm can not only obtain higher quality pipeline layouts,but also solve the problem in which the standard PSO algorithm can easily fall into the local optimal solution.[Conclusions]The results of this study can provide useful references for the pipeline layout optimization of the nuclear power primary loop sys-tems of ships.
作者 林焰 辛登月 卞璇屹 张乔宇 李铁骊 LIN Yan;XIN Dengyue;BIAN Xuanyi;ZHANG Qiaoyu;LI Tieli(School of Naval Architecture Engineering,Dalian University of Technology,Dalian 116024,China)
出处 《中国舰船研究》 CSCD 北大核心 2023年第3期1-12,25,共13页 Chinese Journal of Ship Research
基金 工业装备结构分析国家重点实验室专项基金资助项目(S18315)。
关键词 船用核动力 一回路系统 粒子群优化算法 非线性惯性权重 自适应 线性学习因子 marine nuclear power primary loop system particle swarm optimization(PSO)algorithm nonlinear inertia weights adaptive linear learning factor
  • 相关文献

参考文献10

二级参考文献67

  • 1樊江,马枚,杨晓光.基于协进化的管路系统智能寻径[J].航空动力学报,2004,19(5):593-597. 被引量:9
  • 2徐永法,韩旗,杜军,晏顺兆.船舶能量管理系统PMS研究[J].中国航海,2005,28(3):78-80. 被引量:40
  • 3范小宁,林焰,纪卓尚.船舶管路三维布局优化的变长度编码遗传算法[J].中国造船,2007,48(1):82-90. 被引量:31
  • 4Colorni A, Dorigo M, Maniezzo V, etal. Distributed optimization by ant colonies[C]// Proc of the ECAL- 91. Paris: ECAL, 1991:134-142.
  • 5Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions On Systems, Man, and Cybernetics, Part B, 1996, 26 (1): 29-41.
  • 6Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach for the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
  • 7Stutzle T, Hoos H. Max-min ant system[J]. Future Generation Computer Systems, 2000, 16 (8) : 889-914.
  • 8Maniezzo V, Colorni A. The ant system applied to the quadratic assignment problem[J]. IEEE Transactions on Knowledge and Data Engineering, 1999, 11(5) : 769-778.
  • 9Fan Xiao-ning, Lin Yan, Ji Zhuo-shang. The ant colony optimization for ship pipe route design in 3D space[C]// Proceedings of the 6th World Congress on Control and Automation. Dalian China: IEEE Press, 2006: 3103-3108.
  • 10Rosen C D, Belew R K. New methods for eompetive coevolution[J]. Evolutionary Computation, 1998, 5: 1-29.

共引文献84

同被引文献107

引证文献8

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部