期刊文献+

基于IPSO-ANN时间序列模型的泥水平衡盾构机盾尾密封油脂消耗预测分析 被引量:2

Prediction and Analysis of Tail Seal Grease Consumption of Slurry Shield Machine Based on IPSO-ANN Time Series Model
下载PDF
导出
摘要 准确预测盾尾密封油脂消耗对盾尾密封、盾构施工安全和成本控制具有重要意义。为此,采用K折交叉验证法结合ANN神经网络,改进传统粒子群优化算法,实现IPSO算法自动寻优ANN神经网络神经元超参数,构建泥水平衡盾构机盾尾密封油脂消耗量IPSO-ANN时间序列模型。基于济南黄河隧道,结合东西双线密封油脂用量和通过双重筛选得到的影响因素,制定混合训练、东西线单独训练3种策略对模型进行训练并对施工段油脂消耗量进行预测及分析。结果表明,IPSO-ANN模型能有效寻优具有最佳神经元超参数的神经网络模型;不同训练策略下最优模型平均预测精度均高于80%,其中混合训练策略下最优模型预测精度高达85.142%,并兼具稳定性,对盾尾密封油脂消耗量预测具有参考意义。 Accurately predicting consumption of tail seal grease is very important to tail seal,shield tunnelling safety and cost control.Therefore,the K-fold cross-validation and ANN neural network have been used to improve the conventional particle swarm optimization algorithm,so as to allow the IPSO algorithm to automatically find the optimum neuron hyper-parameters of ANN neural network and build the IPSO-ANN time series model for the slurry shield tail seal grease consumption.In the Jinan Yellow River Tunnel project,based on the seal grease consumption of the east and west lines and the influencing factors that are obtained through double screening,the 3 strategies including hybrid training,east line separate training and west line separate training have been established that are used for model training,and the grease consumption in construction section have been predicted and analyzed.As the results suggest,the IPSO-ANN model is effective in finding the neural network model that has the optimum neuron hyper-parameters;under different training strategies,the average prediction accuracy of optimum model is above 80%,the prediction accuracy under the hybrid training strategy is 85.142%,and there is also good stability,so this model is useful for predicting tail seal grease consumption.
作者 白荣民 马浴阳 刘四进 方勇 何川 BAI Rongmin;MA Yuyang;LIU Sijin;FANG Yong;HE Chuan(Key Laboratory of Transportation Tunnel Engineering,Ministry of Education,Southwest Jiaotong University,Chengdu 610031;China Railway 14th Bureau Group Co.,Ltd.,Nanjing 250032)
出处 《现代隧道技术》 CSCD 北大核心 2023年第3期44-54,共11页 Modern Tunnelling Technology
基金 中国铁建股份有限公司科技开发项目(2018-B06) 中国科协(铁路)青年人才托举项目(2020-2022QNRC001).
关键词 泥水平衡盾构机 盾尾密封油脂 粒子群优化算法 ANN神经网络 时间序列化 Slurry shield machine Tail seal grease Particle swarm optimization algorithm ANN neural network Time serialization
  • 相关文献

参考文献13

二级参考文献118

共引文献120

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部