摘要
为了减少电子计算机中数字硬件的运算量,提升光电卷积神经网络(optronic convolutional neural network,OPCNN)在实际应用中的分类性能,提出了一种新型的光学反向传播算法,在光学平台上实现了OPCNN的实时训练,用于合成孔径雷达的目标分类。根据所提算法对OPCNN进行训练,在训练过程中,网络正向传播与反向传播的运算操作均可以通过光学计算的方式以近光速的处理速度实现。基于运动与静止目标获取与识别(moving and stationary target acquisition and recognition,MSTAR)数据集的目标分类实验验证了所提光学实时训练算法的可行性。
In order to reduce the computational cost of electronic hardware and improve the actual classification performance of optronic convolutional neural network(OPCNN),an optical back propagation algorithm was proposed,and the in-situ training OPCNN in optical platform for synthetic aperture radar(SAR)target classification was realized.According to the proposed algorithm,the main computation operations in the forward and backward propagation processes were carried out in optics,which with the speed of light.Experiments on moving and stationary target acquisition and recognition(MSTAR)datasets demonstrate the feasibility of the proposed optical in-situ training algorithm.
作者
顾子煜
张弦
施君南
高叶盛
GU Ziyu;ZHANG Xian;SHI Junnan;GAO Yesheng(Department of Electronic Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Shanghai Radio Equipment Research Institute,Shanghai 201109,China)
出处
《制导与引信》
2023年第2期28-33,49,共7页
Guidance & Fuze
基金
上海航天先进技术联合研究基金(USCAST2020-5)。