期刊文献+

基于铣削式加工的140 GHz矩形波导带通滤波器 被引量:1

Design of a rectangular waveguide band-pass filter at 140 GHz faricated by metal milling technology
下载PDF
导出
摘要 利用现代计算机数控机床(Computer Numerical Control,CNC)铣削技术实现了中心频率为140 GHz的矩形波导带通滤波器。基于电磁仿真软件HFSS对该滤波器进行了优化设计和容差分析。采用CNC铣削技术完成了该滤波器的加工制备。测试结果与仿真结果吻合良好,表明该滤波器具备优越的性能:其中心频率为140.2 GHz、3 dB相对带宽为10.1%,插入损耗小于0.5 dB,带内回波损耗优于25 dB,距中心频率±20 GHz处带外抑制大于30 dB。该结果进一步验证了利用CNC铣削技术加工140 GHz波段滤波器的可行性。 In this paper,a rectangular waveguide band-pass filter with a center frequency of 140 GHz is realized by using modern Computer Numerical Control(CNC)metal milling technology.The proposed filter is designed based on HFSS and then fabricated by CNC metal milling technology.The measured results agree well with the simulated ones indicating that the filter has excellent performances:the center frequency is 140.2 GHz,the relative bandwidth is 10.1%at 3 dB,the insertion loss is less than 0.5 dB,the in-band return loss is better than 25 dB,and the out-of-band isolation is larger than 30 dB at±20 GHz away from the center frequency.The results further confirm the feasibility of 140 GHz waveguide band filter fabricated by CNC metal milling technology.
作者 熊瑛 马俊成 李东升 唐先锋 Xiong Ying;Ma Juncheng;Li Dongsheng;Tang Xianfeng(School of Engineering and Technology,Chengdu College of University of Electronic Science and Technology of China,Chengdu 611731,China;School of Physical Science and Technology,Southwest Jiaotong University,Chengdu 611756,China)
出处 《电子技术应用》 2023年第7期16-19,共4页 Application of Electronic Technique
基金 四川省重大科技专项(2022YFG0226)。
关键词 带通滤波器 现代计算机数控机床铣削技术 太赫兹 波导 140 GHz band-pass filter CNC metal milling technology THz waveguide 140 GHz
  • 相关文献

参考文献3

二级参考文献33

  • 1刘盛纲.太赫兹科学技术的新发展[J].中国基础科学,2006,8(1):7-12. 被引量:192
  • 2汤红军,洪伟.一种紧缩结构的新型毫米波基片集成波导滤波器[J].红外与毫米波学报,2006,25(2):139-142. 被引量:12
  • 3CROCKER A, GEBBIE H A, KIMMIT M F, et al. Stimulated emission in the far infrared[J]. Nature, 1964, 201: 250.
  • 4GEBBIE H A, STONE N W B, FINDLAY F D. Interferometric observations on far infra-red stimulated emissioin sources[J]. Nature, 1964, 202: 169-170.
  • 5GEBBIE H A, STONE N W B, FINDLAY F D. A stimulated emission source at 0.34 millimetre wave-length[J]. Nature, 1964, 202: 685.
  • 6HU B B, NUSS M C. Imaging with terahertz waves[J]. Opt Lett, 1995, 20(4): 1716.
  • 7PICKWELL E, WALLACE V P. Biomedical applications of terahertz technology[J]. J Phy D Appl Phys, 2006, 39(17): 301-310.
  • 8SIEGEL P H. Terahertz technology[J]. IEEE MTT, 2002, 50 (3): 910.
  • 9ARNONE D D, CIESLA C M. Application of terahertz (THz) technology to medical imaging[C]//Proc SPIE Terahertz Spectroscopy Applications II. Bellingham, WA: International Society for Optical Engineering, 1999: 209-219.
  • 10ANDREW L. Cosmic Background and space science at THz frequencies[C]//2008 IRMMW-THz Conference. Pasadena, California, USA: California Institute of Technology, 2008.

共引文献143

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部