摘要
Designing single-atom nanozymes with densely exposed metal atom active sites and enhancing catalytic activity to detect pollutants remain a serious challenge.Herein,we reported a single-atom nanozyme with layered stacked Fe/Cu dual active sites(Fe/Cu-NC SAzyme)synthesized via hydrothermal and hightemperature pyrolysis using folic acid as a template.Compared with Fe-NC and Cu-NC SAzyme,Fe/Cu-NC SAzyme has higher peroxidase-like activity,which indicates that the doping of synthesized Fe/Cu bimetals can improve the catalytic activity and that the atomic loading of Fe and Cu in Fe/Cu-NC is 5.5 wt%and 2.27 wt%,respectively.When S^(2-)is added to the Fe/Cu-NC catalytic system,a high-sensitivity and high-selectivity S^(2-)colorimetric sensing platform can be established,with a wide linear range(0.09-6μmol/L)and a low detection limit(30 nmol/L),which can be used to detect S^(2-)in environmental water samples.What’s more,the Fe/Cu-NC SAzyme can activate peroxymonosulfate(PMS)to degrade 99.9%of rhodamine B(Rh B)within 10 min with a degradation kinetics of 0.5943 min^(-1).This work details attractive applications in Fe/Cu-NC SAzyme colorimetric sensing and dye degradation.
基金
supported by the National Natural Science Foundation of China(Nos.22276150,21906129)
the Natural Science Foundation of Sichuan Province of China(No.2019YJ0522)
the Innovation Team of Research at China West Normal University(No.KCXTD2022–2)。