摘要
基于1996~2019年的适航指令(CAD)数据,以关联分析得出的典型故障构建评价指标。用风险系数确定白化权函数的边界条件,根据偏差最大化原则确定各指标的权重,提出了基于灰色白化权聚类的安全风险评估模型。利用等时间间隔的各指标数据构成灰色预测模型,并通过优化权重值将预测精度提高了2.88%。预测的故障数量与实际发生相符,证明了预测模型的准确性,可依此有针对地提出改进和预防措施,从而减少故障的发生。
Based on the data of China Airworthiness Directive(CAD)in 1996−2019,the evaluation indexes were constructed with the typical failures obtained by correlation analysis.The boundary conditions of whitening weight function were determined by risk coefficient,and the weight of each index was determined according to the principle of maximization of deviation.A safety risk assessment model based on grey whitening weight clustering was proposed.The grey prediction model was constructed by using the index data of equal time interval,and the prediction accuracy was improved by 2.88%by optimizing the weight value.The predicted number of failures was consistent with the actual occurrence,which proved the accuracy of the prediction model.Accordingly,improvement and prevention measures can be put forward to reduce the occurrence of faults.
作者
曹惠玲
胡彦杰
赵洁
CAO Huiling;HU Yanjie;ZHAO Jie(School of Aeronautical Engineering,Civil Aviation University of China,Tianjin 300300,China;School of Law,Civil Aviation University of China,Tianjin 300300,China)
出处
《航空动力学报》
EI
CAS
CSCD
北大核心
2023年第3期743-751,共9页
Journal of Aerospace Power
基金
中央高校基本科研业务费项目(2020YJS003)。
关键词
适航指令
关联分析
灰色聚类模型
白化权函数
灰色预测模型
airworthiness directives
correlation analysis
grey clustering model
whiten the weight function
grey prediction model