摘要
为了降低自动化集装箱码头充电过程对自动导引运输车(automated guided vehicle,AGV)调度的影响,以提高AGV的作业效率,考虑AGV实际充电需求和空重载耗电差异,以最小化最大完成工时为目标,以AGV电池电量为约束条件,应用遗传算法,构建考虑充电过程的自动化码头AGV作业调度模型。设计3种充电策略,并进行优劣性对比,分析各策略对作业时间的影响。检验结果表明,与传统的充电策略相对比,充电区间设定为50%~65%的机会式充电策略,完成任务总时间和充电时长最优,可以有效提高AGV作业效率。
In order to reduce the influence of the charging process of the automatic container terminals on the dispatching of the automated guided vehicle(AGV)and improve its operational efficiency,considering the actual charging demand of the AGV and the difference in power cosumptions between empty and heavy loaded staluses,this paper aims at minimizing the maximum working hours,takes the battery power of the AGV as the constraint condition,and applies the genetic algorithm to construct the AGV operation dispatching model of the automatic terminal considering the charging process.Three charging strategies are designed to compare their advantages and disadvantages,and their effects on operation time are analyzed.The test shows that compared with the traditional charging strategy,the opportunistic charging strategy with the opportunistic charging interval set at 50%-65%has the best total task completion time and charging time,which effectively improves the AGV operational efficiency.
作者
杨其飞
兰培真
YANG Qifei;LAN Peizhen(Navigation College,Jimei University,Xiamen 361021,China)
出处
《集美大学学报(自然科学版)》
CAS
2023年第2期142-149,共8页
Journal of Jimei University:Natural Science
关键词
自动化集装箱码头
AGV
充电策略
遗传算法
automated container terminals
AGV
opportunistic charging strategy
genetic algorithm