摘要
在新一代高速无线通信技术推动下,低温共烧陶瓷技术(LTCC)正处于重大变革时期.采用低介电常数(K)、低损耗、谐振频率温度稳定型LTCC作为高频基板材料,可以满足无线技术高速率、低延时、高可靠的需求,是当前热点研究之一.因此商用基板材料的现状和一些候选材料的研究工作被主要评述,重点对玻璃/陶瓷体系、氧化物助烧体系、氟化物助烧体系、本征低温烧结体系等低K值LTCC材料的组成、结构特征、介电性能、热膨胀系数等具体指标及相应优缺点进行了讨论.同时介绍了一些热门体系的改性工作及其毫米波适用性,最后对未来低K值LTCC材料的发展进行展望.
With the development of a high-speed wireless technology,low-temperature co-fired ceramics(LTCC)technology becomes popular.The high-speed,low-delay and high-reliable wireless transmission could be achieved by using LTCC substrates with a low-permittivity(K),a low-loss and a stable-temperature of resonant frequency,as one of functional materials.This review introduced the current situation of commercial substrate materials and alternative LTCCs reported,i.e.,ceramic/glass,oxide-assisted sintering,fluoride-assisted sintering and intrinsic low-sintering ceramic systems.The composition,structural characteristics,dielectric properties,coefficient of thermal expansion of low-K LTCCs,as well as the advantages and disadvantages,were also discussed.Some studies of commercial substrates were further described,and their performances in millimeter-wave application were represented.In addition,the development trend of low-K LTCCs was also proposed.
作者
王威
张玲
吴亚光
乔峰
史忠旗
刘文凤
周迪
WANG Wei;ZHANG Ling;WU Yaguang;QIAO Feng;HI Zhongqi;LIU Wenfeng;ZHOU Di(School of Electronic and Information Engineering,Faculty of Electronic and Information Engineering,Xi'an Jiaotong University,Xi'an 710049,China;Chengdu Hongke Electronic Technology Company Limited,Chengdu 610101,China;Hebei Institute of Semiconductor,Shijiazhuang 050051,China;School of Materials Science and Engineering,Xi'an Jiaotong University,Xi'an 710049,China;School of Electrical Engineering,Xi'an Jiaotong University,Xi'an 710049,China)
出处
《硅酸盐学报》
EI
CAS
CSCD
北大核心
2023年第4期934-948,共15页
Journal of The Chinese Ceramic Society
基金
国家自然科学基金项目(51972260,52072295)
陕西省重点研发计划国际合作项目(2021KWZ-10)
中央高校基本科研业务费。
关键词
微波/毫米波
高频基板
低介电常数
低温共烧陶瓷技术
介电性能
microwave/millimeter wave
ceramic substrate
low-permittivity
low temperature co-fired ceramics
dielectric properties