摘要
图像匹配主要通过匹配图像中的大量特征点来实现图像处理,它是目标识别跟踪和室内定位导航等应用领域的重要技术基础。在低光照环境下,采集的图像往往存在局部特征缺失的问题,使提取的特征点数目损耗较大,导致图像匹配精度降低。因此,提出了一种基于同态滤波和多尺度色彩保护(Multi-scale retinex with chromaticity preservation,MSRCP)的特征点补偿算法,使用随机采样一致性(Random sample consensus,RANSAC)算法进行图像匹配。研究结果表明:在低光照环境下,采用基于特征点补偿的图像匹配方法可有效地增加特征点的提取数目,提高了图像匹配准确率,准确率最高可达74.32%,在一定程度上解决了图像匹配困难的问题。
Image matching is mainly realized by matching a large number of feature points in the image,which is an important technical basis for object recognition tracking,indoor positioning navigation,and other application fields.Many images acquired in low light environments often have local features missing,which causes a large loss of the number of extracted feature points,resulting in a reduction of image matching accuracy.The feature point compensation algorithm is proposed based on homomorphic filtering and Multi-scale retinex with chromaticity preservation(MSRCP),and the Random sample consensus(RANSAC)algorithm is used for image matching.The experimental results show that in the low light environment,the image matching method based on feature point compensation can improve the accuracy of image matching by effectively increasing the number of feature points,and the accuracy rate can reach 74.32%,which largely solves the problem of image matching difficulty.
作者
唐华鹏
秦丹阳
燕梦莹
张更新
郑平
白嘉男
TANG Huapeng;QIN Danyang;YAN Mengying;ZHANG Gengxin;ZHENG Ping;BAI Jianan(College of Electronic Engineering,Heilongjiang University,Harbin 150080,China)
出处
《黑龙江大学自然科学学报》
CAS
2023年第2期215-225,共11页
Journal of Natural Science of Heilongjiang University
基金
国家自然科学基金(61771186)
黑龙江省优秀青年科学基金(YQ2020F012)
黑龙江大学研究生创新项目(YJSCX2022-080HLJU,YJSCX2022-205HLJU)。
关键词
低光照
特征点补偿
同态滤波
MSRCP算法
low light
feature point compensation
homomorphic filtering
MSRCP algorithm