摘要
高校大学生重复做大量习题,但知识依然掌握不扎实,一直困扰着教师和学生。为解决这一问题,文章拟采用大数据、人工智能等技术,分析学生知识掌握水平,并在针对薄弱知识点上,推荐适合的知识,加强练习,提高学习效率。文章以大数据技术结合深度学习为基础,研究并开发个性化的知识智能推荐系统,满足不同大学生对知识点的认知水平,达到个性化地推荐适合的知识给学生的目的。
In order to solve the problem that university students repeat and do a lot of exercises,but their knowledge is still not solid,which has been plagued by teachers and students,it is proposed to use big data,artificial intelligence and other technologies to analyze the level of students' knowledge,and to recommend appropriate knowledge,strengthen exercises and improve learning efficiency in the light of weak points of knowledge.Based on the combination of big data technology and in-depth learning,this study studies and develops a personalized knowledge and intelligence recommendation system to meet the cognitive level of different college students on knowledge points,so as to personalize the recommendation of appropriate knowledge to students.
作者
王金权
Wang Jinquan(Guangzhou Modern Information Engineering Vocational and Technical College,Guangzhou 510663,China)
出处
《无线互联科技》
2023年第9期36-39,73,共5页
Wireless Internet Technology
基金
2021年度广东省普通高校特色创新项目,项目名称:大数据背景下高校大学生知识智能推荐系统研究,项目编号:2021KTSCX350。
关键词
大数据
智能推荐
协同过滤算法
数据处理
big data
intelligent recommendation
collaborative filtering algorithm
data processing