期刊文献+

在线社会网络虚假信息检测关键技术研究综述

Survey on Key Technologies of Fake Information Detection in Online Social Networks
下载PDF
导出
摘要 随着互联网技术的不断发展,在线社会网络在拉近人们彼此距离的同时也加速了虚假信息的传播速度,导致虚假信息充斥整个网络空间,严重危害社会、政治和经济秩序,影响公共安全。因此,研究虚假信息检测是一项必要而且重要的工作。首先,介绍了虚假信息检测的研究背景以及国内外研究现状;其次,介绍了虚假信息相关的概念、公开数据集和评价指标;再次,从内容特征和上下文特征两个方面对虚假信息检测技术进行了详细介绍;最后,归纳和总结了各种检测技术的优缺点,并对未来的工作进行了展望。 With the continuous development of Internet technology,online social networks have accelerated the spread of fake information while bringing people closer to each other,resulting in fake information flooding the entire cyberspace,which seriously endangers the social,political and economic order and affects public safety.Therefore,the study of fake information detection is a necessary and important task.First,the study background of fake information detection and the current status of domestic and international research are introduced.Then,concepts related to fake information,publicly available datasets and evaluation indicators are presented.Next,techniques for fake information detection are described in detail in terms of both content features and contextual features.Finally,the pros and cons of various detection techniques are summarized,and the potential avenues for future research are looked forward to.
作者 聂大成 汪明达 刘世钰 杨慧 张翔 邱鸿杰 NIE Dacheng;WANF Mingda;LIU Shiyu;YANG Hui;ZHANG Xiang;QIU Hongjie(No.30 Institute of CETC,Chengdu Sichuan 610041,China;Sichuan Provincial Key Laboratory of Cyberspace Security,Chengdu Sichuan 610041,China)
出处 《通信技术》 2023年第4期391-399,共9页 Communications Technology
基金 国家重点研发计划(2022YFB3102600)。
关键词 社会网络 虚假信息 内容特征 上下文特征 social network fake information content feature contextual feature
  • 相关文献

参考文献10

二级参考文献90

  • 1王永刚,蔡飞志,Eng Keong Lua,胡建斌,陈钟.一种社交网络虚假信息传播控制方法[J].计算机研究与发展,2012,49(S2):131-137. 被引量:19
  • 2Jindal N, Liu B. Analyzing and Detecting Review Spam[C].In: Proceedings of the 7th IEEE International Conference onData Mining (ICDM’07), Washington, D C: IEEE ComputerSociety, 2007: 547-552.
  • 3Jindal N, Liu B. Review Spam Detection [C]. In: Proceedingsof the 16th International Conference on World Wide Web(WWW,07). New York: ACM, 2007: 1189-1190.
  • 4Jindal N, Liu B. Opinion Spam and Analysis [C]. In:Proceedings of the 2008 International Conference on WebSearch and Data Mining (WSDM’08). New York: ACM,2008: 219-230.
  • 5Jindal N, Liu B, Lim E. Finding Unusual Review Patterns UsingUnexpected Rules [C]. In: Proceedings of the 19th ACMInternational Conference on Information and KnowledgeManagement (CIKM510). New York: ACM, 2010: 1549-1552.
  • 6Liu B. Opinion Spam Detection: Detecting Fake Reviews andReviewers [EB/OL]. [2013-11-12], http://www.cs.uic.edu/-liub/FBS/fake-reviews.html.
  • 7Lim E,Nguyen V,Jindal N, et al. Detecting Product ReviewSpammers Using Rating Behaviors [C] . In: Proceedings ofthe 19th ACM International Conference on Information andKnowledge Management (CIKM’10}. New York: ACM, 2010:939-948.
  • 8Wang G, Xie S,Liu B, et al. Review Graph Based OnlineStore Review Spammer Detection [C]. In: Proceedings of the2011 IEEE 11th International Conference on Data Mining(ICDM’ll). Washington, D C: IEEE Computer Society, 2011:1242-1247.
  • 9Algur S P, Patil A P, Hiremath P S, et al. Conceptual LevelSimilarity Measure Based Review Spam Detection [C]. In:Proceedings of the 2010 International Conference on Signaland Image Processing, IEEE, 2010: 416-423.
  • 10Lai C L, Xu K Q,Lau R Y K,et al. Toward a LanguageModeling Approach for Consumer Review Spam Detection[C]. In: Proceedings of the 2010 IEEE 7th InternationalConference on e-Business Engineering. IEEE, 2010: 1-8.

共引文献184

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部