期刊文献+

基于图卷积自注意力机制的神经协同推荐算法 被引量:1

Collaborative Filtering Recommendation Algorithm Based on Graph Convolution Attention Neural Network
下载PDF
导出
摘要 随着信息技术的快速迭代发展,信息过载问题日益严重,推荐算法在一定程度上可以解决信息过载,但是传统推荐算法无法有效解决数据稀疏性和推荐准确性等相关问题。提出一种基于注意力的图卷积神经协同推荐方法(GCACF)。获取用户和项目的相关交互信息,并将其转换为相应的特征向量;将特征向量使用图卷积神经网络的传播方式聚合本地化信息,同时使用注意力机制重新分配聚合后的权重系数;最后将聚合后的特征向量使用BPR损失函数优化相关参数并得出最终推荐结果。在MovieLens-1M和Amazon-baby两个公开数据集进行对比实验,结果表明,GCACF在准确率、召回率、Mrr、命中率和NDCG五个指标上均优于基线方法。 With the rapid iterative development of information technology,the problem of information overload is becoming more and more serious.The recommendation algorithm can solve the information overload to a certain extent,but the traditional recommendation algorithm can not effectively solve the related problems such as data sparsity and recommendation accuracy.This paper proposes a graph convolution attention collaborative filtering(GCACF)recommendation method.Firstly,the model obtains the relevant interactive information of users and projects and transforms into corresponding feature vectors.Secondly,the feature vector aggregates with the propagation of graph convolution neural network and the attention mechanism redistributes the aggregated weight coefficients.Finally,the BPR loss function optimizes aggregated eigenvector and the model obtains the final recommendation result.Through the comparative experiments on Movielens-1M and Amazon-baby on two public datasets,GCACF is superior to the baseline method in precision,recall,Mrr,hit and NDCG.
作者 王巍 杜雨晅 郑小丽 张闯 WANG Wei;DU Yuxuan;ZHENG Xiaoli;ZHANG Chuang(School of Information&Electrical Engineering,Hebei University of Engineering,Handan,Hebei 056038,China;Hebei Key Laboratory of Security&Protection Information Sensing&Processing,Hebei University of Engineering,Handan,Hebei 056038,China;School of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《计算机工程与应用》 CSCD 北大核心 2023年第13期247-258,共12页 Computer Engineering and Applications
基金 国家自然科学基金(61802107) 教育部-中国移动科研基金(MCM20170204) 河北省高等学校科学技术研究项目(ZD2020171) 江苏省博士后科研资助计划项目(1601085C)。
关键词 推荐系统 深度学习 协同推荐 注意力 图卷积神经网络 recommendation system deep learning collaborative recommend attention mechanism graph convolution neural network
  • 相关文献

参考文献10

二级参考文献92

  • 1刘玮.电子商务系统中的信息推荐方法研究[J].情报科学,2006,24(2):300-303. 被引量:31
  • 2Shardanand U,Maes P.Social information filtering:algorithms for automating "word of mouth"[C]//Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems.New York:ACM Press,1995,210-217.
  • 3Herlocker J,Konstan J A,Terveen L,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems,2004,22(1):5-53.
  • 4Geyer-Schulz A,Hahsler M,Wien W,et al.Evaluation of recommender algorithms for an internet information broker based on simple association rules and on the repeat-buying theory[DB/OL].[2008-10-12].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.911.
  • 5Dahlen B J,Konstan J A,Herlocker J L,et al.Jumpstarting movielens:user benefits of starting a collaborative filtering system with "dead data"[DB/OL].[2008-10-12].http://www.bibsonomy.org/bibtex/24433e6aa3be2cdad117bfb5fd7a757a1/bsmyth.
  • 6Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[DB/OL].[2008-10-12].http://www.cs.pitt.edu/-mrotaru/comp/rs/Breese%20UAI%201998.pdf.
  • 7Herlocker J L,Konstan J A,Borchers A,et al.An algorithmic framework for performing collaborative filtering[C]// Hearst M A,Gey F F,Tong R.Proceedings of the 22nd International Conference on Research and Development in Information Retrieval (SIGIR'99) (Aug).New York:ACM Press,1999:230-237.
  • 8Billsus D,Pazzani M J.Learning collaborative information filters[C]// Rich C,Mostow J.Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-1998).Menlo Park,Calif:AAAI Press,1998:46-53.
  • 9Basu C,Hirsh H,Cohen W W.Recommendation as classification:using social and content-based information in recommendation[C]// Rich C,Mostow J.Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-1998).Menlo Park,Calif:AAAI Press,1998:714-720.
  • 10Sarwar B M,Karypis G,Konstan J A,et al.Analysis of recommendation algorithms for e-commerce[C]//Proceedings of the 2nd ACM Conference on Electronic Commerce (EC'00).New York:ACM Press,2000:285-295.

共引文献267

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部