期刊文献+

压电作动器的高斯过程回归建模

Gaussian Process Regression Modeling of Piezoelectric Actuators
下载PDF
导出
摘要 针对压电作动器所存在的迟滞非线性问题,提出了一种基于高斯过程回归的压电作动器建模方法,用高斯过程来表征压电作动器的电压与位移之间的非线性关系,采用粒子群优化算法对高斯过程中协方差函数所包含的三个超参数进行辨识,并与传统的Bouc-Wen模型下的压电作动器的迟滞性结果进行对比。实验仿真结果表明,在信号频率(1~100)Hz范围内,高斯过程回归模型所建立的压电迟滞模型最大均方根误差为0.5329μm,最大相对误差为3.23%,相比于传统的Bouc-Wen模型,高斯过程回归模型模型在10 Hz、50 Hz、80 Hz、100 Hz处的建模误差分别降低了约15%、29%、67%、72%. For piezoelectric actuator hysteresis nonlinearity existing problem,a kind of piezoelectric actuator based on gaussian process regression modeling method is put forward,the gaussian process is used to characterize the nonlinear relationship between voltage of piezoelectric actuators and displacement,the three super parameters which are contained in the process of Gaussian covariance function are identified using the particle swarm optimization algorithm.Comparing with the traditional Bouc-Wen under the model of piezoelectric actuators,the experimental simulation results show that within the signal(1~100)Hz frequency range,the maximum root mean square error of gaussian process regression model of piezoelectric hysteresis model is 0.5329μm,the maximum relative error is 3.23%.Comparing with traditional Bouc-Wen model,the gaussian process regression model in 10 Hz,50 Hz,80 Hz and 100 Hz modeling errors were reduced respectively by about 15%,29%,67%and 72%.
作者 梁晋华 王贞艳 刘思源 LIANG Jin-hua;WANG Zhen-yan;LIU Si-yuan(School of Electronic and Information Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《太原科技大学学报》 2023年第3期225-229,共5页 Journal of Taiyuan University of Science and Technology
基金 山西省研究生教育创新项目(2020SY420)。
关键词 压电作动器 迟滞非线性 高斯过程 超参数辨识 协方差函数 piezoelectric actuator hysteresis nonlinearity gaussian process hyperparameter identification covariance function
  • 相关文献

参考文献4

二级参考文献33

  • 1李春涛,谭永红.迟滞非线性系统的建模与控制[J].控制理论与应用,2005,22(2):281-287. 被引量:16
  • 2党选举,谭永红.基于WIENER模型的压电陶瓷神经网络动态迟滞模型的研究[J].系统仿真学报,2005,17(11):2701-2703. 被引量:15
  • 3Newcomb C V, Flinn I. Improving the linearity of piezoelec- tric ceramic actuators [ J ]. Electronics Letters, 1982, 18 ( ll ) :442444.
  • 4Hu H, Mard R B. On the classical Preisach model for hyster- esis in piezoceramic actuators [ J ]. Mechatronics, 2002, 13 (2) :85-94.
  • 5Shen Guoqiang, Wei Yanding. Study on nonlinear model of piezoelectric actuator and accurate positioning control strate- gy [ C ] //Proceedings of the 6th World Congress on Intelli- gent Control and Automation. Dalian, China, 2006: 8356- 8360.
  • 6Kuhnen K,Janocha H. Compensation of the creep and hyster- esis effects of piezoelectric actuators with inverse systems [C] //Proceedings of ACTUATOR 6th International Confer- ence on New Actuators with Accompanying Exhibition. Bre- men, Germany, 1998 : 308-312.
  • 7Jiang Hao, Ji Hongli, Qiu Jinhao, et al. A modified prandtl- ishlinskii model for modeling asymmetric hysteresis of pizo- electric actuators [ J ]. IEEE Transactions on Ultrasonics, Fer- ro Electrics, and Frequency Control, 2010, 57 ( 5 ) : 1200- 1210.
  • 8Shen Jing-Chung, Jywe Wen-Yuh, Chiang Huan-Keng, et al. Precision tracking control of a piezoelectric-actuated system [ J ]. Precision Engineering, 2007,32 ( 2 ) :71-78.
  • 9Goldfarb M, Celanovic N. Modeling piezoelectric stack actua- tors for control of micromanipulation [ J ]. IEEE Control Sys- tems,1997,17(3) :69-79.
  • 10Choi G S, Lira Y A, Choi G H. Tracking position control of piezoelectric actuators periodic reference inputs [J~. Mecha- tronics, 2002,12 ( 5 ) : 669-684.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部