期刊文献+

天基逆合成孔径激光雷达LEO目标成像模式设计

Design of LEO target imaging mode with space-based Inverse Synthetic Aperture LADAR
下载PDF
导出
摘要 对采用天基逆合成孔径雷达(ISAL)对300~2000 km轨道高度的低轨(LEO)目标的掠飞和绕飞成像模式进行了性能分析及可行性探究,分析了成像分辨率和成像时间、最小无模糊脉冲重复频率(PRF)和回波信噪比(SNR)等系统关键指标,并进行了对比。研究结果表明:绕飞成像模式相比于掠飞成像模式可以实现对于目标的多角度持续观测,且绕飞周期较短(1.5~2.1 h),可以快速获取更为丰富的目标信息,具备进一步三维ISAL成像的潜力;脉冲积累时间虽然更长,但在300~2000 km轨道高度范围只有130~190 ms(掠飞成像为0.1~130 ms);最小无模糊PRF(对于10 m转动直径的目标,约为15 Hz)减少一半(减少了对激光器高重频的要求);由于更长的脉冲积累时间,绕飞模式的回波信噪比更高,通过后期处理可以获得更为清晰的图像结果;适用于对重要目标和高价值资产进行快速、高分辨率、全方位的持续观测。而掠飞模式适用于对相近轨道高度面的LEO目标进行遍历和成像,从而建立目标的特征库。 Objective Inverse Synthetic Aperture LADAR(ISAL)is an active imaging detection method.Its working principle is consistent with that of Inverse Synthetic Aperture Radar(ISAR).The signal works in the laser band(μm level),which obtains range high-resolution information by actively transmitting large broadband laser signals,and obtains azimuth high-resolution information through the virtual aperture formed by the movement of the target relative to the emitter.Relevant studies have evaluated and explored the ISAL imaging of GEO space targets,and there are also corresponding researches that have preliminarily analyzed the parameters of spacebased SAL imaging.However,there is still a lack of detailed analysis and evaluation of ISAL imaging mode in LEO space.In this study,the performance analysis and feasibility of using space-based ISAL for skimming and flying-around imaging modes of LEO targets is explored to provide a basis for the study of space-based ISAL imaging of LEO targets.Methods Two kinds of observation modes,skimming and flying-around imaging modes,are set up.The skimming imaging mode is to use the natural rendezvous of ISAL payload satellite and target satellite for imaging.This imaging mode has many situations,such as co-orbital skimming and hetero-orbital skimming(Fig.1).Flying-around imaging mode means that during the target satellite rotating around the earth for one circle,ISAL satellite also orbits the target satellite for one circle(Fig.4).The key system indicators such as imaging resolution,coherent accumulation time(Fig.6-7),minimum pulse repetition frequency for unambiguous azimuth imaging(Fig.8)and SNR(Fig.9)for the two kinds of observation modes are compared Results and Discussions For the skimming imaging mode,all performance indicators of all rendezvous scenes under given parameters are within the range of both forward and reverse scenes on the same plane.The smaller the relative angular velocity is,the smaller minimum pulse repetition frequency for unambiguous azimuth imaging(PRF)and the higher the signal-to-noise ratio(SNR)are required,but coherent accumulation time required for imaging is increased,especially the revisit period will be greatly increased.Compared with the skimming imaging mode,the flying-around imaging mode can realize the continuous observation of the target,and the flying-around period is short,and can quickly obtain more abundant target information;Although the coherent accumulation time is longer,it is only 130-190 ms in the range of 300-2000 km orbit height,which is completely feasible for engineering applications;The minimum unambiguous PRF is reduced by half and the SNR is higher.Conclusions The feasibility of using space-based ISAL to scan and fly around LEO targets is explored,and the key indicators of the system,such as imaging resolution,coherent accumulation time,minimum pulse repetition frequency for unambiguous azimuth imaging are analyzed and compared with the assumptions that meet the constraints of engineering application.Within the range of observation and simulation calculation of LEO targets,all indicators of the grazing imaging mode and the flying-around imaging mode are feasible for engineering application,and the flying-around imaging mode is applicable in rapid,high-resolution and all-directional continuous observation of important targets and high-value assets.The skimming mode is suitable for traversing and imaging the LEO target at the altitude of close orbit,so as to establish the feature library of the target.
作者 张靖鹏 陈起行 王妍卉 董磊 郑珍珍 张文鑫 Zhang Jingpeng;Chen Qihang;Wang Yanhui;Dong Lei;Zheng Zhenzhen;Zhang Wenxin(Institute of Microsatellite Innovation,Chinese Academy of Sciences,Shanghai 201304,China;Shanghai Microsatellite Engineering Center,Shanghai 201304,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2023年第5期155-164,共10页 Infrared and Laser Engineering
基金 青年拔尖人才计划(29Y1ZKRCYG01) 中国科学院特别研究助理资助项目。
关键词 成像模式 天基 逆合成孔径激光雷达 LEO目标 imaging mode space-based Inverse Synthetic Aperture LADAR LEO targets
  • 相关文献

参考文献12

二级参考文献81

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部