期刊文献+

多晶Ti纳米柱塑性变形的分子动力学模拟研究

Plastic Deformation Mechanism of Polycrystalline Ti Nanopillars Based on Molecular Dynamics
下载PDF
导出
摘要 利用分子动力学模拟研究多晶Ti纳米柱的力学行为和位错反应机制,比较分析不同变形温度和承载条件对多晶Ti纳米柱应力应变关系及其塑性变形行为的影响。模拟结果显示,随着温度升高,多晶Ti纳米柱屈服强度降低,且在不同温度下,屈服强度所对应的应变量未发生明显变化。在整个变形过程中,主要的位错类型为Other和1/3(1100)类型位错,随着温度升高,位错总长度减小。多晶Ti纳米柱压缩变形与拉伸变形应变响应不对称,拉伸屈服强度略高于压缩屈服强度,晶界缺陷在拉伸变形中响应更加明显。 The mechanical behavior and dislocation reaction mechanism of polycrystalline Tinanopillars were investigated by molecular dynamics simulation.The effects of different deformation temperatures and loading conditions on the stress-strain relationship and plastic deformation behavior of polycrystalline Ti nanopillars were compared and analyzed.The simulation results show that the yield strength of polycrystalline Ti nanopillars decreases as the temperature increases,and the amount of strain corresponding to the yield strength does not change at different temperatures.During the whole deformation process,the main dislocation types are Other and 1/3〈1100〉type dislocations,and the total length of dislocations decreases with the increase of temperature.The strain response of polycrystalline Ti nanopillars between compressive deformation and tensile deformation is asymmetric,the tensile yield strength is slightly higher than the tensile yield strength,and the grain boundary defects respond more obviously in the tensile deformation.
作者 王献 魏燕 蔡宏中 汪星强 张贵学 胡昌义 WANG Xian;WEI Yan;CAI Hongzhong;WANG Xingqiang;ZHANG Guixue;HU Changyi(State Key Laboratory of Advanced Technologies for ComprehensiveUtilization of Platinum Metals,Kunming Institute of Precious Metals,Kunming 650106,China)
出处 《材料导报》 CSCD 北大核心 2023年第S01期437-440,共4页 Materials Reports
基金 云南省科技厅项目(202104AR040017) 国家自然科学基金(51361014,52161005)。
关键词 分子动力学 多晶Ti纳米柱 拉伸变形 压缩变形 molecular dynamics polycrystalline Ti nanopillars tensile deformation compression deformation
  • 相关文献

参考文献6

二级参考文献57

  • 1Lu, K,Lu, J.Surface Nanocrystallization (SNC) of Metallic Materials-Presentation of the Concept behind a New Approach[J].Journal of Materials Science & Technology,1999,15(3):193-197. 被引量:303
  • 2杨乐,许斌,李成美,孙常志,邢士波.冷塑性变形对45钢硼铬稀土共渗的影响[J].金属热处理,2007,32(6):96-98. 被引量:2
  • 3Partridge P G. The crystallography and deformation modes of hexagonal close-packed metals [J]. Metall Rev, 1967, 12, 118: 169-194.
  • 4Conrad H. The rate controlling mechanism during yielding and flow of u-titanium at temperatures below 0. 4TM[J].Acta Metall, 1966, 14:1 631-1 633.
  • 5Senkov O N, Jonas J J. Dynamic strain aging and hydrogen-induced softening in alpha titanium [J]. Metall Mater Trans A, 1996, 27A(7): 1 877-1 887.
  • 6Garde A M, Santhanam A T, Reed-Hill R E. The significance of dynamic strain aging in titanium[J]. Acta Metall, 1972, 20: 215-220.
  • 7Chichili D R, Ramesh K T, Hemker K J. The high- strain rate response of alpha-titanium: Experiments, deformation mechanisms and modeling [J]. Acta Mater, 1998, 46(3): 1 025- 1 043.
  • 8Nemat-Nasser S, Guo W G, Cheng J Y. Mechanical properties and deformation mechanisms of a commercially pure titanium[J]. Acta Mater, 1999, 47 (13): 3 705-3 720.
  • 9Salem A A, Kalidindi S R, Doherty R D. Strain hardening of titanium: Role of deformation twinning[J].Acta Mater, 2003, 51:4 225-4 237.
  • 10Harding J. The temperature and strain rate sensitivity of α-titanium[J]. Arch Mech, 1975, 27: 715-732.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部