期刊文献+

具色散非线性波动方程解的存在性与爆破 被引量:1

The existence and blow-up of solutions for nonlinear wave equations with dispersion term
下载PDF
导出
摘要 研究了一类非线性波动方程初边值问题整体解的存在性与爆破问题.利用位势井方法证明了具有两个异号源和具有四阶色散项的波动方程在方程具有负定能量情形下初边值问题整体解的存在性.利用凹性方法证明了具有任意初始正能量时解的有限时间爆破问题. The global existence and blow up of solutions for a class of nonlinear wave equations is studied in this paper.By employing potential well method,the existence of global solutions for initial boundary value problem with two different sign sources and dispersion term in the presence of negative definite energy is proved.The finite time blow up of solutions with arbitrary initial positive energy is also discussed by using the concavity method.
作者 宋玉坤 蔡琳 邢迪 SONG Yu-kun;CAI Lin;XING Di(College of Science,Liaoning University of Technology,Jinzhou 121001,China)
出处 《东北师大学报(自然科学版)》 CAS 北大核心 2023年第2期16-19,共4页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11572146) 辽宁省自然科学基金资助项目(2021-MS-318)。
关键词 波动方程 整体解 存在性 爆破 wave equation global solution existence blow-up
  • 相关文献

参考文献2

二级参考文献18

  • 1叶耀军.一类非线性Schrodinger方程的整体小解[J].应用数学学报,2006,29(1):91-96. 被引量:2
  • 2Glassy R T. On the Blowing up of Solutions to the Cauchy Problem for Nonlinear Schr6dinger Equations [J] J Math Phys, 1977, 18(9) : 1794-1797.
  • 3Takayoshi Ogawa, Yoshio Tsutsumi. Blow up of Ha Solutions for the One-Dimensional Nonlinear SehrOdinger Equations with Critical Power Nonlinearity[J]. Proe Amer Math Soc, 199I, 111(2): 487-496.
  • 4Takayoshi Ogawa, Yoshio Tsutsumi. Blow up of Solutions for the Nonlinear Schr6dinger Equation with Quartic Potential and Periodic Boundary Condition [C]//Functional Analytic Methods for Partial Differential Equations Lecture Notes in Mathematics. Vol. 1450. ES. 1.1: Springer, 1990: 236-251.
  • 5ZHANG Jian, LI Xiao-guang, WU Yong-hong. Remarks on the Blow-up Rate for Critical Nonlinear Schr6dinger Equation with Harmonic Potentia[J]. Applied Mathematics and Computation, 2009, 208(2): 389-396.
  • 6Ginibre J, Velo G. On a Class of Nonlinear Schr0dinger Equations. I The Cauchy Problem, General Case [J]. J Funct Anal, 1979, 32(1).. 1 32.
  • 7Lange H. On Nonlinear Schr6dinger Equations in the Theory of Quantum Mechanical Dissipative Systems [J]. Nonlinear Analysis, 1985, 9(10) : 1115-1133.
  • 8SHU Ji, ZHANG Jian. Nonlinear Schr0dinger Equation with Harmonic Potential[J]. Journal of Mathematical Physics, 2006, 47(6): 063503.
  • 9Ozawa T. Finite Energy Solutions for the Schrodinger Equations with Quadratic Nonlinearity in One Space Dimension [J]. Funkcialaj Ekvacioj, 1998, 41(3): 451 468.
  • 10Chabrowski J, Szulkin A. On the Schr6dinger Equation Involving a Critical Sobolev Exponent and Magnetic Field [J]. Topological Methods in Nonlinear Analysis, 2005, 25(1): 3-21.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部