期刊文献+

基于LSTM-StackingCXR模型的房价预测算法研究 被引量:1

Research on House Price Prediction Algorithm Based on LSTM-StackingCXR Model
下载PDF
导出
摘要 房屋价格一直是社会最为关心的话题.预测房价走势并为购房者提供参考房价一直是房地产业和相关学术领域的研究热点.针对房价预测过程中存在数据集变量多、维度高的问题,本文通过计算多个房源特征与房源价格之间的皮尔森系数,去除冗余房源特征,有效地降低了房源特征数据集的维度.为了将信息损失降至最小,采用CatBoost处理房源特征中的类别变量.针对预测模型的过拟合、泛化能力差的问题,采用Stacking策略融合了CatBoost、XGBoost、随机森林算法,并且结合LSTM神经网络,最终提出了一种LSTM-StackingCXR模型.实验结果表明,LSTM-StackingCXR模型预测结果与现有多个模型预测结果相比,其预测精度指标有较大程度的提升. Housing prices has always been the most concerning topic in society.Predicting the trend of housing prices and providing reference for homebuyers has always been a research hotspot in the real estate industry and related academic fields..In response to the problem of multiple variables and high dimensionality in the dataset of housing price prediction,this article calculates the Pearson coefficient between multiple housing features and housing prices,removes redundant housing features,and effectively reduces the dimensionality of the housing feature dataset.In the process of data preprocessing,a Catboost category variable processing method is used to minimize the information loss.In view of the problem of overfitting and poor generalization ability of the prediction model,a LSTM-StackingCXR model is established by combining stackingstrategy with Catboost,XGBoost and random forest model.The experimental results show that the prediction results of LSTM-StackingCXR model has significantly improved compared to the prediction results of multiple existing models.
作者 高巍 刘博洋 李大舟 王淮中 GAO Wei;LIU Boyang;LI Dazhou;WANG Huaizhong(Shenyang University of Chemical Technology,Shenyang 110142,China)
出处 《沈阳化工大学学报》 CAS 2023年第1期80-86,共7页 Journal of Shenyang University of Chemical Technology
基金 辽宁省教育厅科学技术研究项目(L2016011) 辽宁省博士启动基金项目(201601196) 辽宁省教育厅科学研究项目(LQ2017008)。
关键词 房价预测 Stacking策略 CatBoost XGBoost 随机森林 housing price prediction Stacking strategy CatBoost XGBoost random forest
  • 相关文献

参考文献8

二级参考文献48

共引文献163

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部