摘要
针对传统基于迭代优化的医学影像配准方法速度慢、泛化性差的问题,本研究提出了一种基于深度学习的膀胱癌磁共振成像(magnetic resonance image,MRI)跨模态无监督配准方法,并采用具有随机块采样的标准互信息(patch normalized mutual information,Patch-NMI)进行无监督训练。相比传统的迭代配准方法,本研究算法在进行膀胱癌动态增强成像(dynamic contrast-enhanced imaging,DCE)和T2加权像(T2-weighted imaging,T2WI)配准时,精度提升了1.3%,速度提高了20.42倍。实验结果表明,本算法在进行膀胱癌DCE和T2WI配准时,精度更高,速度更快。
To solve the slow speed and poor generalization of traditional medical image registration based on iterative optimization,we proposed a cross-modal unsupervised registration method of bladder cancer MRI based on deep learning.The patch normalized mutual information(Patch-NMI)loss with random block sampling was used for unsupervised training.Compared with the traditional iterative registration method,the accuracy of the proposed algorithm was improved by 1.3%,and the speed was improved by 20.42 times in the registration of dynamic contrast-enhanced imaging(DCE)and T2-weighted imaging(T2WI).The results show that this algorithm has higher accuracy and faster speed in the registration of DCE and T2WI.
作者
陈志颖
陈春晓
吴泽静
徐俊琪
CHEN Zhiying;CHEN Chunxiao;WU Zejing;XU Junqi(Department of Biomedical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处
《生物医学工程研究》
2023年第2期145-151,共7页
Journal Of Biomedical Engineering Research
关键词
膀胱癌诊断
多参数磁共振
跨模态配准
深度学习
端到端
无监督学习
相似性度量
Diagnosis of bladder cancer
Multi-parameter MRI
Cross-modal registration
Deep learning
End-to-end
Unsupervised learning
Similarity measure